Template:Using the mixed weibull distribution in Weibull++: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
Line 23: Line 23:


the order of the subpopulations which are given the designation 1, 2, 3, or 4 is of no consequence. For consistency, the application will always return the order of the results based on the magnitude of the scale parameter.
the order of the subpopulations which are given the designation 1, 2, 3, or 4 is of no consequence. For consistency, the application will always return the order of the results based on the magnitude of the scale parameter.


'''Example 1:'''
'''Example 1:'''
{{Example:2Subpop Mixed Weibull}}
{{Example:2Subpop Mixed Weibull}}

Revision as of 18:26, 14 February 2012

Using the Mixed Weibull Distribution in Weibull++

2subpopmixedweibull.png

To use the mixed Weibull distribution, simply select the Mixed option under Parameters/Type, and click the Calculate icon. A window will appear asking you which form of the mixed Weibull you would like to use, i.e. S = 2, 3 or 4. In other words, How many subpopulations would you like to consider?

Simply select the number of subpopulations you would like to consider and click OK. The application will automatically calculate the parameters of each subpopulation for you.

Viewing the Calculated Parameters

When using the Mixed Weibull option, the parameters given in the result area apply to different subpopulations. To view the results for a particular subpopulation, select the subpopulation, as shown next.

Subpop1.png
Subpop2.png


About the Calculated Parameters

Weibull++ uses the numbers 1, 2, 3 and 4 (or first, second, third and fourth subpopulation) to identify each subpopulation. These are just designations for each subpopulation, and they are ordered based on the value of the scale parameter, [math]\displaystyle{ \eta }[/math] . Since the equation used is additive or:

[math]\displaystyle{ {{R}_{1,..,S}}(T)=\underset{i=1}{\overset{S}{\mathop \sum }}\,\frac{{{N}_{i}}}{N}{{e}^{-{{\left( \tfrac{T}{{{\eta }_{i}}} \right)}^{{{\beta }_{i}}}}}} }[/math]

the order of the subpopulations which are given the designation 1, 2, 3, or 4 is of no consequence. For consistency, the application will always return the order of the results based on the magnitude of the scale parameter.


Example 1:


We will illustrate the mixed Weibull analysis using a Monte Carlo generated set of data. To repeat this example, generate data from a 2-parameter Weibull distribution using the Weibull++ Monte Carlo utility. The following figures illustrate the required steps, inputs and results.

In the Monte Carlo window, enter the values and select the options shown below for subpopulation 1.

Mixed Weibull Example 1 Simulation Sub1.png

Switch to subpopulation 2 and make the selection shown below. Click Generate.

Mixed Weibull Example 1 Simulation Sub2.png

The simulation settings are:

Mixed Weibull Example 1 Simulation Settings.png

After the data set has been generated, choose the 2 Subpop-Mixed Weibull distribution. Click Calculate.

The results for subpopulation 1 are shown next. (Note that your results could be different due to the randomness of the simulation.)

Mixed Weibull Example 1 Sub1 Result.png.png

The results for subpopulation 2 are shown next. (Note that your results could be different due to the randomness of the simulation.)

Mixed Weibull Example 1 Sub2 Result.png

The Weibull probability plot for this data is shown next. (Note that your results could be different due to the randomness of the simulation.)

Mixed Weibull Example 1 Plot.png