|
|
(5 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| == Weibull Probability Density Function ==
| | #REDIRECT [[The Weibull Distribution]] |
| | |
| === The Three-Parameter Weibull Distribution ===
| |
| | |
| The three-parameter Weibull ''pdf'' is given by:
| |
| | |
| ::<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{T-\gamma }{\eta }}\right) ^{\beta }} </math>
| |
| | |
| :where,
| |
| | |
| ::<math> f(T)\geq 0,\text{ }T\geq 0\text{ or }\gamma, </math>
| |
| | |
| ::<math>\beta>0\ \,\!</math>,
| |
| | |
| ::<math> \eta > 0 \,\!</math>,
| |
| | |
| ::<math> -\infty < \gamma < +\infty \,\!</math>
| |
| | |
| :and,
| |
| | |
| ::<math> \eta= \,\!</math> scale parameter, or characteristic life
| |
| ::<math> \beta= \,\!</math> shape parameter (or slope),
| |
| ::<math> \gamma= \,\!</math> location parameter (or failure free life).
| |
| | |
| === The Two-Parameter Weibull Distribution ===
| |
| | |
| The two-parameter Weibull ''pdf'' is obtained by setting
| |
| <math> \gamma=0 \,\!</math>, and is given by:
| |
| | |
| ::<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math>
| |
| | |
| === The One-Parameter Weibull Distribution ===
| |
| | |
| The one-parameter Weibull ''pdf'' is obtained by again setting
| |
| <math>\gamma=0 \,\!</math> and assuming <math>\beta=C=Constant \,\!</math> assumed value or:
| |
| | |
| ::<math> f(T)={ \frac{C}{\eta }}\left( {\frac{T}{\eta }}\right) ^{C-1}e^{-\left( {\frac{T}{ \eta }}\right) ^{C}} \,\!</math>
| |
| | |
| where the only unknown parameter is the scale parameter, <math>\eta\,\!</math>.
| |
| | |
| Note that in the formulation of the one-parameter Weibull, we assume that the shape parameter <math>\beta \,\!</math> is known ''a priori'' from past experience on identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed.
| |