|
|
| (6 intermediate revisions by one other user not shown) |
| Line 1: |
Line 1: |
| ===Likelihood Ratio Confidence Bounds===
| | #REDIRECT [[The_Normal_Distribution#Likelihood_Ratio_Confidence_Bounds]] |
| ====Bounds on Parameters====
| |
| As covered in Chapter 5, the likelihood confidence bounds are calculated by finding values for <math>{{\theta }_{1}}</math> and <math>{{\theta }_{2}}</math> that satisfy:
| |
| | |
| ::<math>-2\cdot \text{ln}\left( \frac{L({{\theta }_{1}},{{\theta }_{2}})}{L({{\widehat{\theta }}_{1}},{{\widehat{\theta }}_{2}})} \right)=\chi _{\alpha ;1}^{2}</math>
| |
| | |
| | |
| This equation can be rewritten as:
| |
| | |
| ::<math>L({{\theta }_{1}},{{\theta }_{2}})=L({{\widehat{\theta }}_{1}},{{\widehat{\theta }}_{2}})\cdot {{e}^{\tfrac{-\chi _{\alpha ;1}^{2}}{2}}}</math>
| |
| | |
| | |
| For complete data, the likelihood formula for the normal distribution is given by:
| |
| | |
| ::<math>L(\mu ,\sigma )=\underset{i=1}{\overset{N}{\mathop \prod }}\,f({{x}_{i}};\mu ,\sigma )=\underset{i=1}{\overset{N}{\mathop \prod }}\,\frac{1}{\sigma \cdot \sqrt{2\pi }}\cdot {{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{x}_{i}}-\mu }{\sigma } \right)}^{2}}}}</math>
| |
| | |
| where the <math>{{x}_{i}}</math> values represent the original time to failure data. For a given value of <math>\alpha </math> , values for <math>\mu </math> and <math>\sigma </math> can be found which represent the maximum and minimum values that satisfy Eqn. (lratio3). These represent the confidence bounds for the parameters at a confidence level <math>\delta ,</math> where <math>\alpha =\delta </math> for two-sided bounds and <math>\alpha =2\delta -1</math> for one-sided.
| |
| | |
| ====Example 5====
| |
| Five units are put on a reliability test and experience failures at 12, 24, 28, 34, and 46 hours. Assuming a normal distribution, the MLE parameter estimates are calculated to be <math>\widehat{\mu }=28.8</math> and <math>\widehat{\sigma }=11.2143.</math> Calculate the two-sided 80% confidence bounds on these parameters using the likelihood ratio method.
| |
| =====Solution to Example 5=====
| |
| The first step is to calculate the likelihood function for the parameter estimates:
| |
| | |
| ::<math>\begin{align}
| |
| L(\widehat{\mu },\widehat{\sigma })= & \underset{i=1}{\overset{N}{\mathop \prod }}\,f({{x}_{i}};\widehat{\mu },\widehat{\sigma })=\underset{i=1}{\overset{5}{\mathop \prod }}\,\frac{1}{\widehat{\sigma }\cdot \sqrt{2\pi }}\cdot {{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{x}_{i}}-\widehat{\mu }}{\widehat{\sigma }} \right)}^{2}}}} \\
| |
| L(\widehat{\mu },\widehat{\sigma })= & \underset{i=1}{\overset{5}{\mathop \prod }}\,\frac{1}{11.2143\cdot \sqrt{2\pi }}\cdot {{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{x}_{i}}-28.8}{11.2143} \right)}^{2}}}} \\
| |
| L(\widehat{\mu },\widehat{\sigma })= & 4.676897\times {{10}^{-9}}
| |
| \end{align}</math>
| |
| | |
| where <math>{{x}_{i}}</math> are the original time-to-failure data points. We can now rearrange Eqn. (lratio3) to the form:
| |
| | |
| ::<math>L(\mu ,\sigma )-L(\widehat{\mu },\widehat{\sigma })\cdot {{e}^{\tfrac{-\chi _{\alpha ;1}^{2}}{2}}}=0</math>
| |
| | |
| | |
| Since our specified confidence level, <math>\delta </math> , is 80%, we can calculate the value of the chi-squared statistic, <math>\chi _{0.8;1}^{2}=1.642374.</math> We can now substitute this information into the equation:
| |
| | |
| ::<math>\begin{align}
| |
| L(\mu ,\sigma )-L(\widehat{\mu },\widehat{\sigma })\cdot {{e}^{\tfrac{-\chi _{\alpha ;1}^{2}}{2}}}= & 0, \\
| |
| \\
| |
| L(\mu ,\sigma )-4.676897\times {{10}^{-9}}\cdot {{e}^{\tfrac{-1.642374}{2}}}= & 0, \\
| |
| \\
| |
| L(\mu ,\sigma )-2.057410\times {{10}^{-9}}= & 0.
| |
| \end{align}</math>
| |
| | |
| | |
| It now remains to find the values of <math>\mu </math> and <math>\sigma </math> which satisfy this equation. This is an iterative process that requires setting the value of <math>\mu </math> and finding the appropriate values of <math>\sigma </math> , and vice versa.
| |
| | |
| The following table gives the values of <math>\sigma </math> based on given values of <math>\mu </math> .
| |
| | |
| [[Image:tableofmu.gif|thumb|center|400px| ]] | |
| | |
| <math></math>
| |
| [[Image:circleplot.gif|thumb|center|400px| ]]
| |
| | |
| | |
| <center><math>\begin{matrix}
| |
| \text{ }\!\!\mu\!\!\text{ } & {{\text{ }\!\!\sigma\!\!\text{ }}_{\text{1}}} & {{\text{ }\!\!\sigma\!\!\text{ }}_{\text{2}}} & \text{ }\!\!\mu\!\!\text{ } & {{\text{ }\!\!\sigma\!\!\text{ }}_{\text{1}}} & {{\text{ }\!\!\sigma\!\!\text{ }}_{\text{2}}} \\
| |
| \text{22}\text{.0} & \text{12}\text{.045} & \text{14}\text{.354} & \text{29}\text{.0} & \text{7.849}& \text{19.909} \\
| |
| \text{22}\text{.5} & \text{11}\text{.004} & \text{15}\text{.310} & \text{29}\text{.5} & \text{7}\text{.876} & \text{17}\text{.889} \\
| |
| \text{23}\text{.0} & \text{10}\text{.341} & \text{15}\text{.894} & \text{30}\text{.0} & \text{7}\text{.935} & \text{17}\text{.844} \\
| |
| \text{23}\text{.5} & \text{9}\text{.832} & \text{16}\text{.328} & \text{30}\text{.5} & \text{8}\text{.025} & \text{17}\text{.776} \\
| |
| \text{24}\text{.0} & \text{9}\text{.418} & \text{16}\text{.673} & \text{31}\text{.0} & \text{8}\text{.147} & \text{17}\text{.683} \\
| |
| \text{24}\text{.5} & \text{9}\text{.074} & \text{16}\text{.954} & \text{31}\text{.5} & \text{8}\text{.304} & \text{17}\text{.562} \\
| |
| \text{25}\text{.0} & \text{8}\text{.784} & \text{17}\text{.186} & \text{32}\text{.0} & \text{8}\text{.498} & \text{17}\text{.411} \\
| |
| \text{25}\text{.5} & \text{8}\text{.542} & \text{17}\text{.377} & \text{32}\text{.5} & \text{8}\text{.732} & \text{17}\text{.227} \\
| |
| \text{26}\text{.0} & \text{8}\text{.340} & \text{17}\text{.534} & \text{33}\text{.0} & \text{9}\text{.012} & \text{17}\text{.004} \\
| |
| \text{26}\text{.5} & \text{8}\text{.176} & \text{17}\text{.661} & \text{33}\text{.5} & \text{9}\text{.344} & \text{16}\text{.734} \\
| |
| \text{27}\text{.0} & \text{8}\text{.047} & \text{17}\text{.760} & \text{34}\text{.0} & \text{9}\text{.742} & \text{16}\text{.403} \\
| |
| \text{27}\text{.5} & \text{7}\text{.950} & \text{17}\text{.833} & \text{34}\text{.5} & \text{10}\text{.229} & \text{15}\text{.990} \\
| |
| \text{28}\text{.0} & \text{7}\text{.885} & \text{17}\text{.882} & \text{35}\text{.0} & \text{10}\text{.854} & \text{15}\text{.444} \\
| |
| \text{28}\text{.5} & \text{7}\text{.852} & \text{17}\text{.907} & \text{35}\text{.5} & \text{11}\text{.772} & \text{14}\text{.609} \\
| |
| \end{matrix}</math></center>
| |
| | |
| This data set is represented graphically in the following contour plot:
| |
| | |
| (Note that this plot is generated with degrees of freedom <math>k=1</math> , as we are only determining bounds on one parameter. The contour plots generated in Weibull++ are done with degrees of freedom <math>k=2</math> , for use in comparing both parameters simultaneously.) As can be determined from the table, the lowest calculated value for <math>\sigma </math> is 7.849, while the highest is 17.909. These represent the two-sided 80% confidence limits on this parameter. Since solutions for the equation do not exist for values of <math>\mu </math> below 22 or above 35.5, these can be considered the two-sided 80% confidence limits for this parameter. In order to obtain more accurate values for the confidence limits on <math>\mu </math> , we can perform the same procedure as before, but finding the two values of <math>\mu </math> that correspond with a given value of <math>\sigma .</math> Using this method, we find that the two-sided 80% confidence limits on <math>\mu </math> are 21.807 and 35.793, which are close to the initial estimates of 22 and 35.5.
| |
| | |
| ====Bounds on Time and Reliability====
| |
| In order to calculate the bounds on a time estimate for a given reliability, or on a reliability estimate for a given time, the likelihood function needs to be rewritten in terms of one parameter and time/reliability, so that the maximum and minimum values of the time can be observed as the parameter is varied. This can be accomplished by substituting a form of the normal reliability equation into the likelihood function. The normal reliability equation can be written as:
| |
| | |
| ::<math>R=1-\Phi \left( \frac{t-\mu }{\sigma } \right)</math>
| |
| | |
| This can be rearranged to the form:
| |
| | |
| ::<math>\mu =t-\sigma \cdot {{\Phi }^{-1}}(1-R)</math>
| |
| | |
| where <math>{{\Phi }^{-1}}</math> is the inverse standard normal. This equation can now be substituted into Eqn. (normlikelihood), to produce a likelihood equation in terms of <math>\sigma ,</math> <math>t</math> and <math>R\ \ :</math>
| |
| | |
| ::<math>L(\sigma ,t/R)=\underset{i=1}{\overset{N}{\mathop \prod }}\,\frac{1}{\sigma \cdot \sqrt{2\pi }}\cdot {{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{x}_{i}}-\left[ t-\sigma \cdot {{\Phi }^{-1}}(1-R) \right]}{\sigma } \right)}^{2}}}}</math>
| |
| | |
| The unknown parameter <math>t/R</math> depends on what type of bounds are being determined. If one is trying to determine the bounds on time for a given reliability, then <math>R</math> is a known constant and <math>t</math> is the unknown parameter. Conversely, if one is trying to determine the bounds on reliability for a given time, then <math>t</math> is a known constant and <math>R</math> is the unknown parameter. Either way, Eqn. (normliketr) can be used to solve Eqn. (lratio3) for the values of interest.
| |
| | |
| ====Example 6====
| |
| For the data given in Example 5, determine the two-sided 80% confidence bounds on the time estimate for a reliability of 40%. The ML estimate for the time at <math>R(t)=40%</math> is 31.637.
| |
| =====Solution to Example 6=====
| |
| In this example, we are trying to determine the two-sided 80% confidence bounds on the time estimate of 31.637. This is accomplished by substituting <math>R=0.40</math> and <math>\alpha =0.8</math> into Eqn. (normliketr), and varying <math>\sigma </math> until the maximum and minimum values of <math>t</math> are found. The following table gives the values of <math>t</math> based on given values of <math>\sigma </math> .
| |
| | |
| [[Image:tabletbasedonsigma.gif|thumb|center|400px| ]]
| |
| <math></math>
| |
| | |
| This data set is represented graphically in the following contour plot:
| |
| | |
| [[Image:ovalplot.gif|thumb|center|400px| ]]
| |
| | |
| | |
| As can be determined from the table, the lowest calculated value for <math>t</math> is 25.046, while the highest is 39.250. These represent the 80% confidence limits on the time at which reliability is equal to 40%.
| |
| | |
| ====Example 7====
| |
| For the data given in Example 5, determine the two-sided 80% confidence bounds on the reliability estimate for <math>t=30</math> . The ML estimate for the reliability at <math>t=30</math> is 45.739%.
| |
| | |
| =====Solution to Example 7=====
| |
| In this example, we are trying to determine the two-sided 80% confidence bounds on the reliability estimate of 45.739%. This is accomplished by substituting <math>t=30</math> and <math>\alpha =0.8</math> into Eqn. (normliketr), and varying <math>\sigma </math> until the maximum and minimum values of <math>R</math> are found. The following table gives the values of <math>R</math> based on given values of <math>\sigma </math> .
| |
| | |
| [[Image:tablerbasedonsigma.gif|thumb|center|400px| ]]
| |
| | |
| This data set is represented graphically in the following contour plot:
| |
| | |
| [[Image:crazyoplot.gif|thumb|center|400px| ]]
| |
| | |
| | |
| As can be determined from the table, the lowest calculated value for <math>R</math> is 24.776%, while the highest is 68.000%. These represent the 80% two-sided confidence limits on the reliability at <math>t=30</math> .
| |