Template:Ipl weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{IPL-Lognormal}}
#REDIRECT [[Inverse_Power_Law_(IPL)_Relationship]]
==IPL-Weibull==
<br>
The IPL-Weibull model can be derived by setting  <math>\eta =L(V)</math> in the Weibull <math>pdf</math>, yielding the following IPL-Weibull <math>pdf</math>:
 
<br>
::<math>f(t,V)=\beta K{{V}^{n}}{{\left( K{{V}^{n}}t \right)}^{\beta -1}}{{e}^{-{{\left( K{{V}^{n}}t \right)}^{\beta }}}}</math>
 
<br>
This is a three parameter model. Therefore it is more flexible but it also requires more laborious techniques for parameter estimation. The IPL-Weibull model yields the IPL-exponential model for  <math>\beta =1.</math>
 
<br>
===IPL-Weibull Statistical Properties Summary===
<br>
====Mean or MTTF====
<br>
The mean,  <math>\overline{T}</math>  (also called  <math>MTTF</math> ), of the IPL-Weibull model is given by:
<br>
 
::<math>\overline{T}=\frac{1}{K{{V}^{n}}}\cdot \Gamma \left( \frac{1}{\beta }+1 \right)</math>
<br>
 
where  <math>\Gamma \left( \tfrac{1}{\beta }+1 \right)</math>  is the gamma function evaluated at the value of  <math>\left( \tfrac{1}{\beta }+1 \right)</math> .
<br>
====Median====
<br>
The median, <math>\breve{T},</math> of the IPL-Weibull model is given by:
<br>
::<math>\breve{T}=\frac{1}{K{{V}^{n}}}{{\left( \ln 2 \right)}^{\tfrac{1}{\beta }}}</math>
<br>
 
====Mode====
<br>
The mode,  <math>\tilde{T},</math>  of the IPL-Weibull model is given by:
<br>
::<math>\tilde{T}=\frac{1}{K{{V}^{n}}}{{\left( 1-\frac{1}{\beta } \right)}^{\tfrac{1}{\beta }}}</math>
 
====Standard Deviation====
<br>
The standard deviation,  <math>{{\sigma }_{T}},</math>  of the IPL-Weibull model is given by:
 
<br>
::<math>{{\sigma }_{T}}=\frac{1}{K{{V}^{n}}}\cdot \sqrt{\Gamma \left( \frac{2}{\beta }+1 \right)-{{\left( \Gamma \left( \frac{1}{\beta }+1 \right) \right)}^{2}}}</math>
 
<br>
====IPL-Weibull Reliability Function====
<br>
The IPL-Weibull reliability function is given by:
 
<br>
::<math>R(T,V)={{e}^{-{{\left( K{{V}^{n}}T \right)}^{\beta }}}}</math>
 
====Conditional Reliability Function====
<br>
The IPL-Weibull conditional reliability function at a specified stress level is given by:
 
<br>
::<math>R(T,t,V)=\frac{R(T+t,V)}{R(T,V)}=\frac{{{e}^{-{{\left[ K{{V}^{n}}\left( T+t \right) \right]}^{\beta }}}}}{{{e}^{-{{\left( K{{V}^{n}}T \right)}^{\beta }}}}}</math>
 
<br>
:or:
 
<br>
::<math>R(T,t,V)={{e}^{-\left[ {{\left( K{{V}^{n}}\left( T+t \right) \right)}^{\beta }}-{{\left( K{{V}^{n}}T \right)}^{\beta }} \right]}}</math>
 
====Reliable Life====
<br>
For the IPL-Weibull model, the reliable life, <math>{T}_{R}</math>, of a unit for a specified reliability and starting the mission at age zero is given by:
 
<br>
::<math>{{T}_{R}}=\frac{1}{K{{V}^{n}}}{{\left\{ -\ln \left[ R\left( {{T}_{R}},V \right) \right] \right\}}^{\tfrac{1}{\beta }}}</math>
 
<br>
 
====IPL-Weibull Failure Rate Function====
<br>
The IPL-Weibull failure rate function,  <math>\lambda (T)</math> , is given by:
 
<br>
::<math>\lambda \left( T,V \right)=\frac{f\left( T,V \right)}{R\left( T,V \right)}=\beta K{{V}^{n}}{{\left( K{{V}^{n}}T \right)}^{\beta -1}}</math>
 
===Parameter Estimation===
<br>
====Maximum Likelihood Estimation Method====
<br>
Substituting the inverse power law relationship into the Weibull log-likelihood function yields:
 
<br>
::<math>\begin{align}
  \Lambda = \underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \beta KV_{i}^{n}{{\left( KV_{i}^{n}{{T}_{i}} \right)}^{\beta -1}}{{e}^{-{{\left( KV_{i}^{n}{{T}_{i}} \right)}^{\beta }}}} \right] -\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }{{\left( KV_{i}^{n}T_{i}^{\prime } \right)}^{\beta }} +\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }] 
\end{align}</math>
 
<br>
where:
 
<br>
::<math>R_{Li}^{\prime \prime }={{e}^{-{{\left( KV_{i}^{n}T_{Li}^{\prime \prime } \right)}^{\beta }}}}</math>
 
<br>
::<math>R_{Ri}^{\prime \prime }={{e}^{-{{\left( KV_{i}^{n}T_{Ri}^{\prime \prime } \right)}^{\beta }}}}</math>
 
<br>
and:
<br>
• <math>{{F}_{e}}</math>  is the number of groups of exact times-to-failure data points.
<br>
• <math>{{N}_{i}}</math>  is the number of times-to-failure data points in the  <math>{{i}^{th}}</math>  time-to-failure data group.
<br>
• <math>\beta </math>  is the Weibull shape parameter (unknown, the first of three parameters to be estimated).
<br>
• ..  is the IPL parameter (unknown, the second of three parameters to be estimated).
<br>
• <math>n</math>  is the second IPL parameter (unknown, the third of three parameters to be estimated).
<br>
• <math>{{V}_{i}}</math>  is the stress level of the  <math>{{i}^{th}}</math>  group.
<br>
• <math>{{T}_{i}}</math>  is the exact failure time of the  <math>{{i}^{th}}</math>  group.
<br>
• <math>S</math>  is the number of groups of suspension data points.
<br>
• <math>N_{i}^{\prime }</math>  is the number of suspensions in the  ..  group of suspension data points.
<br>
• <math>T_{i}^{\prime }</math>  is the running time of the  <math>{{i}^{th}}</math>  suspension data group.
<br>
• <math>FI</math>  is the number of interval data groups.
<br>
• <math>N_{i}^{\prime \prime }</math>  is the number of intervals in the  <math>{{i}^{th}}</math>  group of data intervals.
<br>
• <math>T_{Li}^{\prime \prime }</math>  is the beginning of the  <math>{{i}^{th}}</math>  interval.
<br>
• <math>T_{Ri}^{\prime \prime }</math>  is the ending of the  <math>{{i}^{th}}</math>  interval.
<br>
<br>
The solution (parameter estimates) will be found by solving for  <math>\beta ,</math>  <math>K,</math>  <math>n</math>  so that  <math>\tfrac{\partial \Lambda }{\partial \beta }=0,</math>  <math>\tfrac{\partial \Lambda }{\partial K}=0</math>  and  .. , where:
<br>
<br>
::<math>\begin{align}\frac{\partial \Lambda }{\partial \beta }=\ & \frac{1}{\beta }\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}+\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\ln \left( KV_{i}^{n}{{T}_{i}} \right) -\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}{{\left( KV_{i}^{n}{{T}_{i}} \right)}^{\beta }}\ln \left( KV_{i}^{n}{{T}_{i}} \right) -\underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }{{\left( \,KV_{i}^{n}T_{i}^{\prime } \right)}^{\beta }}\ln \left( KV_{i}^{n}T_{i}^{\prime } \right) \\  & \overset{FI}{\mathop{\underset{i=1} {\mathop{-\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{{{\left( KV_{i}^{n} \right)}^{\beta }}\left[ R_{Li}^{\prime \prime }T_{Li}^{\prime \prime \beta }\left( \ln (KV_{i}^{n}T_{Li}^{\prime \prime }) \right)-R_{Ri}^{\prime \prime }T_{Ri}^{\prime \prime \beta }\left( \ln (KV_{i}^{n}T_{Ri}^{\prime \prime }) \right) \right]}{R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }} \\
\frac{\partial \Lambda }{\partial K}=\ & \frac{\beta }{K}\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}-\frac{\beta }{K}\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}{{\left( KV_{i}^{n}{{T}_{i}} \right)}^{\beta }} -\frac{\beta }{K}\underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }{{\left( KV_{i}^{n}T_{i}^{\prime } \right)}^{\beta }} \overset{{}}{\mathop{-\beta \underset{i=1}{\mathop{\overset{FI}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,}}\,N_{i}^{\prime \prime }\frac{{{K}^{\beta -1}}V_{i}^{n\beta }\left[ T_{Li}^{\prime \prime \beta }R_{Li}^{\prime \prime }-T_{Ri}^{\prime \prime \beta }R_{Ri}^{\prime \prime } \right]}{R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }}  \\
\frac{\partial\Lambda }{\partial n}=\ & \beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\ln ({{V}_{i}}) -\beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\ln ({{V}_{i}}){{\left( KV_{i}^{n}{{T}_{i}} \right)}^{\beta }} -\beta \underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }\ln ({{V}_{i}}){{\left( KV_{i}^{n}{{T}_{i}} \right)}^{\beta }} \overset{FI}{\mathop{\underset{i=1}{\mathop{-\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{n{{K}^{\beta }}V_{i}^{\beta (n-1)}\left[ T_{Li}^{\prime \prime \beta }R_{Li}^{\prime \prime }-T_{Ri}^{\prime \prime \beta }R_{Ri}^{\prime \prime } \right]}{R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }} 
\end{align}</math>
 
<br>

Latest revision as of 23:27, 15 August 2012