Template:Cd power lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
===Cumulative Damage Power - Lognormal===
#REDIRECT [[Time-Varying_Stress_Models#Cumulative_Damage_Power_Relationship]]
<br>
Given a time-varying stress  <math>x(t)</math>  and assuming the power law relationship, the median life is given by:
 
 
::<math>\frac{1}{\breve{T}(t,x)}=s(t,x)={{\left( \frac{x(t)}{a} \right)}^{n}}</math>
 
<br>
The reliability function of the unit under a single stress is given by:
 
<br>
::<math>R(t,x(t))=1-\Phi (z)</math>
 
<br>
where:
 
<br>
::<math>z(t,x)=\frac{\ln I(t,x)}{\sigma _{T}^{\prime }}</math>
 
<br>
and:
 
<br>
::<math>I(t,x)=\underset{0}{\mathop{\overset{t}{\mathop{\int_{}^{}}}\,}}\,{{\left( \frac{x(u)}{a} \right)}^{n}}du</math>
 
<br>
Therefore, the  <math>pdf</math>  is:
 
<br>
::<math>f(t,x)=\frac{s(t,x)\varphi (z(t,x))}{\sigma _{T}^{\prime }I(t,x)}</math>
 
<br>
Parameter estimation can be accomplished via maximum likelihood estimation methods, and confidence intervals can be approximated using the Fisher matrix approach. Once the parameters are determined, all other characteristics of interest can be obtained utilizing the statistical properties definitions (e.g. mean life, failure rate, etc.) presented in previous chapters. The log-likelihood equation is as follows:
 
<br>
::<math>\begin{align}
  & \ln (L)= & \Lambda =\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}\ln [\frac{s({{T}_{i}},{{x}_{i}})\varphi (z({{T}_{i}},{{x}_{i}}))}{\sigma _{T}^{\prime }I({{T}_{i}},{{x}_{i}})}] \overset{S}{\mathop{\underset{i=1}{\mathop{+\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime }\ln \left( 1-\Phi (z(T_{i}^{\prime },x_{i}^{\prime })) \right)+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [\Phi (z_{Ri}^{\prime \prime })-\Phi (z_{Li}^{\prime \prime })]
\end{align}</math>
 
<br>
where:
 
<br>
::<math>\begin{align}
  & z_{Ri}^{\prime \prime }= & \frac{\ln I(T_{Ri}^{\prime \prime },x_{i}^{\prime \prime })}{\sigma _{T}^{\prime }} \\
& z_{Li}^{\prime \prime }= & \frac{\ln I(T_{Li}^{\prime \prime },x_{i}^{\prime \prime })}{\sigma _{T}^{\prime }} 
\end{align}</math>
 
<br>
and:
<br>
• <math>{{F}_{e}}</math>  is the number of groups of exact time-to-failure data points.
<br>
• <math>{{N}_{i}}</math>  is the number of times-to-failure in the  <math>{{i}^{th}}</math>  time-to-failure data group.
<br>
• <math>{{T}_{i}}</math>  is the exact failure time of the  <math>{{i}^{th}}</math>  group.
<br>
• <math>S</math>  is the number of groups of suspension data points.
<br>
• <math>N_{i}^{\prime }</math>  is the number of suspensions in the  <math>{{i}^{th}}</math>  group of suspension data points.
<br>
• <math>T_{i}^{\prime }</math>  is the running time of the  <math>{{i}^{th}}</math>  suspension data group.
<br>
• <math>FI</math>  is the number of interval data groups.
<br>
• <math>N_{i}^{\prime \prime }</math>  is the number of intervals in the  <math>{{i}^{th}}</math>  group of data intervals.
<br>
• <math>T_{Li}^{\prime \prime }</math>  is the beginning of the    interval.
<br>
• <math>T_{Ri}^{\prime \prime }</math>  is the ending of the  <math>{{i}^{th}}</math>  interval.
<br>

Latest revision as of 23:42, 15 August 2012