|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| ===Statistical Properties Summary===
| | #REDIRECT [[Distributions_Used_in_Accelerated_Testing]] |
| {{alta exponential mean}}
| |
| | |
| {{alta exponential median}}
| |
| | |
| {{alta exponential mode}}
| |
| | |
| {{alta exponential sd}}
| |
| | |
| {{alta exponential reliability function}}
| |
| | |
| {{alta exponential conditional reliability}}
| |
| | |
| ====Reliable Life====
| |
| The reliable life, or the mission duration for a desired reliability goal, <math>{{t}_{R}}</math> , for the 1-parameter exponential distribution is given by:
| |
| <br>
| |
| | |
| ::<math>\begin{align}
| |
| & R({{t}_{R}})= & {{e}^{-\lambda {{t}_{R}}}} \\
| |
| & & \\
| |
| & \ln [R({{t}_{R}})]= & -\lambda {{t}_{R}}
| |
| \end{align}</math>
| |
| <br>
| |
| :or:
| |
| <br>
| |
| ::<math>{{t}_{R}}=-\frac{\ln [R({{t}_{R}})]}{\lambda }</math>
| |
| | |
| <br>
| |
| ====Failure Rate Function====
| |
| The exponential failure rate function is given by:
| |
| <br>
| |
| ::<math>\lambda (T)=\frac{f(T)}{R(T)}=\frac{\lambda {{e}^{-\lambda (T)}}}{{{e}^{-\lambda (T)}}}=\lambda =\text{Constant}</math>
| |
| <br>
| |