|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| ==Approximate Confidence Bounds for the Arrhenius-Lognormal==
| | #REDIRECT [[Arrhenius_Relationship#Approximate_Confidence_Bounds_for_the_Arrhenius-Lognormal]] |
| <br>
| |
| | |
| {{acb-w on the parameters}}
| |
| | |
| {{acb-w on reliability}}
| |
| | |
| ===Confidence Bounds on Time===
| |
| <br>
| |
| The bounds around time, for a given lognormal percentile (unreliability), are estimated by first solving the reliability equation with respect to time, as follows:
| |
| | |
| <br>
| |
| ::<math>{T}'(V;\widehat{B},\widehat{C},{{\widehat{\sigma }}_{{{T}'}}})=\ln (\widehat{C})+\frac{\widehat{B}}{V}+z\cdot {{\widehat{\sigma }}_{{{T}'}}}</math>
| |
| | |
| <br>
| |
| where:
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & {T}'(V;\widehat{B},\widehat{C},{{\widehat{\sigma }}_{{{T}'}}})= & \ln (T) \\
| |
| & z= & {{\Phi }^{-1}}\left[ F({T}') \right]
| |
| \end{align}</math>
| |
| | |
| <br>
| |
| and:
| |
| | |
| <br>
| |
| ::<math>\Phi (z)=\frac{1}{\sqrt{2\pi }}\mathop{}_{-\infty }^{z({T}')}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz</math>
| |
| | |
| <br>
| |
| The next step is to calculate the variance of <math>{T}'(V;\widehat{B},\widehat{C},{{\widehat{\sigma }}_{{{T}'}}}):</math>
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & Var({T}')= & {{\left( \frac{\partial {T}'}{\partial B} \right)}^{2}}Var(\widehat{B})+{{\left( \frac{\partial {T}'}{\partial C} \right)}^{2}}Var(\widehat{C})+{{\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\
| |
| & & +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial C} \right)Cov\left( \widehat{B},\widehat{C} \right) \\
| |
| & & +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) \\
| |
| & & +2\left( \frac{\partial {T}'}{\partial C} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right)
| |
| \end{align}</math>
| |
|
| |
| | |
| <br>
| |
| or:
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & Var({T}')= & \frac{1}{{{V}^{2}}}Var(\widehat{B})+\frac{1}{{{C}^{2}}}Var(\widehat{C})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\
| |
| & & +\frac{2}{B\cdot C}Cov\left( \widehat{B},\widehat{C} \right) \\
| |
| & & +\frac{2\widehat{z}}{V}Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) \\
| |
| & & +\frac{2\widehat{z}}{C}Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right)
| |
| \end{align}</math>
| |
| | |
| | |
| <br>
| |
| The upper and lower bounds are then found by:
| |
| | |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & T_{U}^{\prime }= & \ln {{T}_{U}}={T}'+{{K}_{\alpha }}\sqrt{Var({T}')} \\
| |
| & T_{L}^{\prime }= & \ln {{T}_{L}}={T}'-{{K}_{\alpha }}\sqrt{Var({T}')}
| |
| \end{align}</math>
| |
| | |
| <br>
| |
| Solving for <math>{{T}_{U}}</math> and <math>{{T}_{L}}</math> yields:
| |
| | |
| <br>
| |
| ::<math>\begin{align}
| |
| & {{T}_{U}}= & {{e}^{T_{U}^{\prime }}}\text{ (Upper bound)} \\
| |
| & {{T}_{L}}= & {{e}^{T_{L}^{\prime }}}\text{ (Lower bound)}
| |
| \end{align}</math>
| |
| | |
| | |
| | |
| | |
| | |
| {{RS Copyright}}
| |