|
|
(4 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| ===Eyring-Exponential Statistical Properties Summary===
| | #REDIRECT [[Eyring_Relationship#Eyring-Exponential]] |
| {{eyring-ex mean}}
| |
| | |
| {{eyring-ex median}}
| |
| | |
| {{eyring-ex mode}}
| |
| | |
| ====Standard Deviation====
| |
| <br>
| |
| The standard deviation, <math>{{\sigma }_{T}}</math>, for the Eyring-exponential model is given by:
| |
| <br>
| |
| ::<math>{{\sigma }_{T}}=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math>
| |
| <br>
| |
| ====Eyring-Exponential Reliability Function====
| |
| <br>
| |
| The Eyring-exponential reliability function is given by:
| |
| | |
| <br>
| |
| ::<math>R(T,V)={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>
| |
| | |
| <br>
| |
| This function is the complement of the Eyring-exponential cumulative distribution function or:
| |
| | |
| <br>
| |
| ::<math>R(T,V)=1-Q(T,V)=1-\mathop{}_{0}^{T}f(T,V)dT</math>
| |
| | |
| <br>
| |
| :and:
| |
| | |
| <br>
| |
| ::<math>R(T,V)=1-\mathop{}_{0}^{T}V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}dT={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>
| |
| | |
| ====Conditional Reliability====
| |
| <br>
| |
| The conditional reliability function for the Eyring-exponential model is given by:
| |
| <br>
| |
| ::<math>R(T,t,V)=\frac{R(T+t,V)}{R(T,V)}=\frac{{{e}^{-\lambda (T+t)}}}{{{e}^{-\lambda T}}}={{e}^{-t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>
| |
| <br>
| |
| ====Reliable Life====
| |
| <br>
| |
| For the Eyring-exponential model, the reliable life, or the mission duration for a desired reliability goal, <math>{{t}_{R,}}</math> is given by:
| |
| <br>
| |
| ::<math>R({{t}_{R}},V)={{e}^{-{{t}_{R}}\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>
| |
| <br>
| |
| ::<math>\ln [R({{t}_{R}},V)]=-{{t}_{R}}\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}</math>
| |
| <br>
| |
| :or:
| |
| <br>
| |
| ::<math>{{t}_{R}}=-\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}\ln [R({{t}_{R}},V)]</math>
| |