| 
				     | 
				
| Line 1: | 
Line 1: | 
 | ====Reliable Life====
  |  | #REDIRECT [[Eyring_Relationship#Eyring-Lognormal]]  | 
 | <br>
  |  | 
 | For the Eyring-lognormal model, the reliable life, or the mission duration for a desired reliability goal,  <math>{{t}_{R}},</math>  is estimated by first solving the reliability equation with respect to time, as follows:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>T_{R}^{\prime }=-\ln (V)-A+\frac{B}{V}+z\cdot {{\sigma }_{{{T}'}}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | where:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>z={{\Phi }^{-1}}\left[ F\left( T_{R}^{\prime },V \right) \right]</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | and:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\Phi (z)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{z({T}',V)}{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt</math>
  |  | 
 | <br>
  |  | 
 | <br>
  |  | 
 | Since  <math>{T}'=\ln (T)</math>  the reliable life,  <math>{{t}_{R,}}</math>  is given by:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>{{t}_{R}}={{e}^{T_{R}^{\prime }}}</math>
  |  | 
 |    |  | 
 | <br>
  |  |