| 
				     | 
				
| Line 1: | 
Line 1: | 
 | ===Bounds on Reliability===
  |  | #REDIRECT [[Eyring_Relationship#Approximate_Confidence_Bounds_for_the_Eyring-Lognormal]]  | 
 |    |  | 
 | <br>
  |  | 
 | The reliability of the lognormal distribution is given by: 
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>R({T}',V;A,B,{{\sigma }_{{{T}'}}})=\int_{{{T}'}}^{\infty }\frac{1}{{{\widehat{\sigma }}_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t+\ln (V)+\widehat{A}-\tfrac{\widehat{B}}{V}}{{{\widehat{\sigma }}_{{{T}'}}}} \right)}^{2}}}}dt</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | Let   <math>\widehat{z}(t,V;A,B,{{\sigma }_{T}})=\tfrac{t+\ln (V)+\widehat{A}-\tfrac{\widehat{B}}{V}}{{{\widehat{\sigma }}_{{{T}'}}}},</math>  then  <math>\tfrac{d\widehat{z}}{dt}=\tfrac{1}{{{\widehat{\sigma }}_{{{T}'}}}}.</math> 
  |  | 
 |    |  | 
 | <br>
  |  | 
 | For  <math>t={T}'</math> ,  <math>\widehat{z}=\tfrac{{T}'+\ln (V)+\widehat{A}-\tfrac{\widehat{B}}{V}}{{{\widehat{\sigma }}_{{{T}'}}}}</math> , and for  <math>t=\infty ,</math>   <math>\widehat{z}=\infty .</math>  The above equation then becomes:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>R(\widehat{z})=\int_{\widehat{z}({T}',V)}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | The bounds on  <math>z</math>  are estimated from:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\begin{align}
  |  | 
 |   & {{z}_{U}}= & \widehat{z}+{{K}_{\alpha }}\sqrt{Var(\widehat{z})} \\ 
  |  | 
 |  & {{z}_{L}}= & \widehat{z}-{{K}_{\alpha }}\sqrt{Var(\widehat{z})}  
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | where:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\begin{align}
  |  | 
 |    Var(\widehat{z})= & \left( \frac{\partial \widehat{z}}{\partial A} \right)_{\widehat{A}}^{2}Var(\widehat{A})+\left( \frac{\partial \widehat{z}}{\partial B} \right)_{\widehat{B}}^{2}Var(\widehat{B})+\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)_{{{\widehat{\sigma }}_{{{T}'}}}}^{2}Var({{\widehat{\sigma }}_{T}}) +2{{\left( \frac{\partial \widehat{z}}{\partial A} \right)}_{\widehat{A}}}{{\left( \frac{\partial \widehat{z}}{\partial B} \right)}_{\widehat{B}}}Cov\left( \widehat{A},\widehat{B} \right) \\ 
  |  | 
 |  & +2{{\left( \frac{\partial \widehat{z}}{\partial A} \right)}_{\widehat{A}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{A},{{\widehat{\sigma }}_{T}} \right) +2{{\left( \frac{\partial \widehat{z}}{\partial B} \right)}_{\widehat{B}}}{{\left( \frac{\partial \widehat{z}}{\partial {{\sigma }_{{{T}'}}}} \right)}_{{{\widehat{\sigma }}_{{{T}'}}}}}Cov\left( \widehat{B},{{\widehat{\sigma }}_{T}} \right)  
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | or:
  |  | 
 |    |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\begin{align}
  |  | 
 |   & Var(\widehat{z})=  \frac{1}{\widehat{\sigma }_{{{T}'}}^{2}}[Var(\widehat{A})+\frac{1}{{{V}^{2}}}Var(\widehat{B})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) -\frac{2}{V}Cov\left( \widehat{A},\widehat{B} \right)-2\widehat{z}Cov\left( \widehat{A},{{\widehat{\sigma }}_{{{T}'}}} \right)+\frac{2\widehat{z}}{V}Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right)]  
  |  | 
 | \end{align}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | The upper and lower bounds on reliability are:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\begin{align}
  |  | 
 |   & {{R}_{U}}= & \int_{{{z}_{L}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Upper bound)} \\ 
  |  | 
 |  & {{R}_{L}}= & \int_{{{z}_{U}}}^{\infty }\frac{1}{\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz\text{ (Lower bound)}  
  |  | 
 | \end{align}</math>
  |  |