Template:Repairable systems analysis rga: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
 
Line 1: Line 1:
==Repairable Systems Analysis==
#REDIRECT [[RGA Models for Repairable Systems Analysis]]
===Background===
Most complex systems, such as automobiles, communication systems, aircraft, printers, medical diagnostics systems, helicopters, etc., are repaired and not replaced when they fail. When these systems are fielded or subjected to a customer use environment, it is often of considerable interest to determine the reliability and other performance characteristics under these conditions. Areas of interest may include assessing the expected number of failures during the warranty period, maintaining a minimum mission reliability, evaluating the rate of wearout, determining when to replace or overhaul a system and minimizing life cycle costs. In general, a lifetime distribution, such as the Weibull distribution, cannot be used to address these issues. In order to address the reliability characteristics of complex repairable systems, a process is often used instead of a distribution. The most popular process model is the Power Law model. This model is popular for several reasons. One is that it has a very practical foundation in terms of minimal repair. This is the situation when the repair of a failed system is just enough to get the system operational again. Second, if the time to first failure follows the Weibull distribution, then each succeeding failure is governed by the Power Law model in the case of minimal repair. From this point of view, the Power Law model is an extension of the Weibull distribution.
<br>
 
Sometimes, the Crow Extended model , which was introduced in Chapter 9 for the developmental data, is also applied for fielded repairable systems. Applying the Crow Extended model on repairable system data allows analysts to project the system MTBF after reliability-related issues are addressed during the field operation. Projections are calculated based on the mode classifications (A, BC and BD). The calculation procedure is the same as the one for the developmental data.and is not repeated in this chapter.
<br>
 
{{distribution ex rsa}}
 
{{process ex rsa}}
 
{{using power law model rsa}}

Latest revision as of 06:13, 23 August 2012