Confidence Bounds for Repairable Systems Analysis: Difference between revisions
Chris Kahn (talk | contribs) No edit summary |
mNo edit summary |
||
Line 7: | Line 7: | ||
The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is approximately treated as being normally distributed. | The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is approximately treated as being normally distributed. | ||
::<math>\frac{\ln (\ | ::<math>\frac{\ln (\hat{\beta })-\ln (\beta )}{\sqrt{Var\left[ \ln (\hat{\beta }) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | ||
::<math>C{{B}_{\beta }}=\ | ::<math>C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\!</math> | ||
::<math>\ | ::<math>\hat{\beta }=\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{\hat{\lambda }\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\left[ (T_{q}^{\hat{\beta }}\ln ({{T}_{q}})-S_{q}^{\hat{\beta }}\ln ({{S}_{q}}) \right]-\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\underset{i=1}{\overset{{{N}_{q}}}{\mathop{\sum }}}\,\ln ({{X}_{i}}{{}_{q}})}\,\!</math> | ||
All variance can be calculated using the Fisher Information Matrix. | All variance can be calculated using the Fisher Information Matrix. | ||
Line 41: | Line 41: | ||
The parameter <math>\lambda \,\!</math> must be positive, thus <math>\ln \lambda \,\!</math> is approximately treated as being normally distributed. These bounds are based on: | The parameter <math>\lambda \,\!</math> must be positive, thus <math>\ln \lambda \,\!</math> is approximately treated as being normally distributed. These bounds are based on: | ||
::<math>\frac{\ln (\ | ::<math>\frac{\ln (\hat{\lambda })-\ln (\lambda )}{\sqrt{Var\left[ \ln (\hat{\lambda }) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | ||
The approximate confidence bounds on <math>\lambda \,\!</math> are given as: | The approximate confidence bounds on <math>\lambda \,\!</math> are given as: | ||
::<math>C{{B}_{\lambda }}=\ | ::<math>C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\!</math> | ||
where <math>\ | where <math>\hat{\lambda }=\tfrac{n}{T_{K}^{{\hat{\beta }}}}\,\!</math>. | ||
The variance calculation is the same the equations given in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | The variance calculation is the same the equations given in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | ||
Line 84: | Line 84: | ||
The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is approximately treated as being normally distributed. | The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is approximately treated as being normally distributed. | ||
::<math>\frac{\ln ({{\ | ::<math>\frac{\ln ({{\hat{m}}_{c}}(t))-\ln ({{m}_{c}}(t))}{\sqrt{Var\left[ \ln ({{\hat{m}}_{c}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | ||
The approximate confidence bounds on the cumulative MTBF are then estimated from: | The approximate confidence bounds on the cumulative MTBF are then estimated from: | ||
::<math>CB={{\ | ::<math>CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{m}}_{c}}(t))}/{{\hat{m}}_{c}}(t)}}\,\!</math> | ||
:where: | :where: | ||
::<math>{{\ | ::<math>{{\hat{m}}_{c}}(t)=\frac{1}{\hat{\lambda }}{{t}^{1-\hat{\beta }}}\,\!</math> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Var({{\ | Var({{\hat{m}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\ | & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\, | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
Line 102: | Line 102: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
\frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{\ | \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }}{{t}^{1-\hat{\beta }}}\ln (t) \\ | ||
\frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{\ | \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}}{{t}^{1-\hat{\beta }}} | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
Line 125: | Line 125: | ||
The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is approximately treated as being normally distributed. | The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is approximately treated as being normally distributed. | ||
::<math>\frac{\ln ({{\ | ::<math>\frac{\ln ({{\hat{m}}_{i}}(t))-\ln ({{m}_{i}}(t))}{\sqrt{Var\left[ \ln ({{\hat{m}}_{i}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | ||
The approximate confidence bounds on the instantaneous MTBF are then estimated from: | The approximate confidence bounds on the instantaneous MTBF are then estimated from: | ||
::<math>CB={{\ | ::<math>CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{m}}_{i}}(t))}/{{\hat{m}}_{i}}(t)}}\,\!</math> | ||
:where: | :where: | ||
::<math>{{\ | ::<math>{{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\!</math> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Var({{\ | Var({{\hat{m}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\ | & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
Line 143: | Line 143: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
\frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\ | \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{\hat{\beta }}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln (t) \\ | ||
\frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{\ | \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}} | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
Line 198: | Line 198: | ||
The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math> must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is approximately treated as being normally distributed. | The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math> must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is approximately treated as being normally distributed. | ||
::<math>\frac{\ln ({{\ | ::<math>\frac{\ln ({{\hat{\lambda }}_{c}}(t))-\ln ({{\lambda }_{c}}(t))}{\sqrt{Var\left[ \ln ({{\hat{\lambda }}_{c}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | ||
The approximate confidence bounds on the cumulative failure intensity are then estimated using: | The approximate confidence bounds on the cumulative failure intensity are then estimated using: | ||
::<math>CB={{\ | ::<math>CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{\lambda }}_{c}}(t))}/{{\hat{\lambda }}_{c}}(t)}}\,\!</math> | ||
:where: | :where: | ||
::<math>{{\ | ::<math>{{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\!</math> | ||
:and: | :and: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Var({{\ | Var({{\hat{\lambda }}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\ | & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
Line 218: | Line 218: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
\frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \ | \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln (t) \\ | ||
\frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\ | \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}} | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
Line 234: | Line 234: | ||
The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is approximately treated as being normally distributed. | The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is approximately treated as being normally distributed. | ||
::<math>\frac{\ln ({{\ | ::<math>\frac{\ln ({{\hat{\lambda }}_{i}}(t))-\ln ({{\lambda }_{i}}(t))}{\sqrt{Var\left[ \ln ({{\hat{\lambda }}_{i}}(t)) \right]}}\sim N(0,1)\,\!</math> | ||
The approximate confidence bounds on the instantaneous failure intensity are then estimated from: | The approximate confidence bounds on the instantaneous failure intensity are then estimated from: | ||
::<math>CB={{\ | ::<math>CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{\lambda }}_{i}}(t))}/{{\hat{\lambda }}_{i}}(t)}}\,\!</math> | ||
where <math>{{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\!</math> and: | where <math>{{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\!</math> and: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Var({{\ | Var({{\hat{\lambda }}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\ | & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
Line 250: | Line 250: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
\frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\ | \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln (t) \\ | ||
\frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \ | \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}} | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
Line 266: | Line 266: | ||
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | ||
::<math>\frac{\ln (\ | ::<math>\frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | ||
The confidence bounds on the time are given by: | The confidence bounds on the time are given by: | ||
::<math>CB=\ | ::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math> | ||
:where: | :where: | ||
::<math>Var(\ | ::<math>Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | ||
The variance calculation is the same as the calculations in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | The variance calculation is the same as the calculations in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | ||
::<math>\ | ::<math>\hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\!</math> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Line 308: | Line 308: | ||
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | ||
::<math>\frac{\ln (\ | ::<math>\frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | ||
The confidence bounds on the time are given by: | The confidence bounds on the time are given by: | ||
::<math>CB=\ | ::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math> | ||
:where: | :where: | ||
::<math>Var(\ | ::<math>Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | ||
The variance calculation is the same as the calculations in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | The variance calculation is the same as the calculations in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | ||
::<math>\ | ::<math>\hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}\,\!</math> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Line 358: | Line 358: | ||
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | ||
::<math>\frac{\ln (\ | ::<math>\frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln \hat{T} \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | ||
The confidence bounds on the time are given by: | The confidence bounds on the time are given by: | ||
::<math>CB=\ | ::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math> | ||
:where: | :where: | ||
::<math>Var(\ | ::<math>Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | ||
The variance calculation is the same as the calculations given in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | The variance calculation is the same as the calculations given in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | ||
::<math>\ | ::<math>\hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\,\!</math> | ||
Line 398: | Line 398: | ||
These bounds are based on: | These bounds are based on: | ||
::<math>\frac{\ln (\ | ::<math>\frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\sim N(0,1)\,\!</math> | ||
The confidence bounds on the time are given by: | The confidence bounds on the time are given by: | ||
::<math>CB=\ | ::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math> | ||
:where: | :where: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Var(\ | Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\ | & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
The variance calculation is the same as the calculations given in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | The variance calculation is the same as the calculations given in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | ||
::<math>\ | ::<math>\hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}\,\!</math> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Line 429: | Line 429: | ||
These bounds are based on: | These bounds are based on: | ||
::<math>\log it(\ | ::<math>\log it(\hat{R}(t))\sim N(0,1)\,\!</math> | ||
::<math>\log it(\ | ::<math>\log it(\hat{R}(t))=\ln \left\{ \frac{\hat{R}(t)}{1-\hat{R}(t)} \right\}\,\!</math> | ||
The confidence bounds on reliability are given by: | The confidence bounds on reliability are given by: | ||
::<math>CB=\frac{\ | ::<math>CB=\frac{\hat{R}(t)}{\hat{R}(t)+(1-\hat{R}(t)){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{R}(t))}/\left[ \hat{R}(t)(1-\hat{R}(t)) \right]}}}\,\!</math> | ||
::<math>Var(\ | ::<math>Var(\hat{R}(t))={{\left( \frac{\partial R}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial R}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial R}{\partial \beta } \right)\left( \frac{\partial R}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | ||
The variance calculation is the same as the calculations in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | The variance calculation is the same as the calculations in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section. | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
\frac{\partial R}{\partial \beta }= & {{e}^{-[\ | \frac{\partial R}{\partial \beta }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[\lambda {{t}^{\hat{\beta }}}\ln (t)-\lambda {{(t+d)}^{\hat{\beta }}}\ln (t+d)] \\ | ||
\frac{\partial R}{\partial \lambda }= & {{e}^{-[\ | \frac{\partial R}{\partial \lambda }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[{{t}^{\hat{\beta }}}-{{(t+d)}^{\hat{\beta }}}] | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
Line 453: | Line 453: | ||
With failure terminated data, the 100( <math>1-\alpha \,\!</math> )% confidence interval for the current reliability at time <math>t\,\!</math> in a specified mission time <math>d\,\!</math> is: | With failure terminated data, the 100( <math>1-\alpha \,\!</math> )% confidence interval for the current reliability at time <math>t\,\!</math> in a specified mission time <math>d\,\!</math> is: | ||
::<math>({{[\ | ::<math>({{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})\,\!</math> | ||
:where | :where | ||
::<math>\ | ::<math>\hat{R}(\tau )={{e}^{-[\hat{\lambda }{{(t+\tau )}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}\,\!</math> | ||
<math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> can be obtained from the equation for failure terminated data in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Instantaneous_MTBF|Bounds on Instantaneous MTBF]] section. | <math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> can be obtained from the equation for failure terminated data in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Instantaneous_MTBF|Bounds on Instantaneous MTBF]] section. | ||
Line 465: | Line 465: | ||
With time terminated data, the 100( <math>1-\alpha \,\!</math> )% confidence interval for the current reliability at time <math>t\,\!</math> in a specified mission time <math>\tau \,\!</math> is: | With time terminated data, the 100( <math>1-\alpha \,\!</math> )% confidence interval for the current reliability at time <math>t\,\!</math> in a specified mission time <math>\tau \,\!</math> is: | ||
::<math>({{[\ | ::<math>({{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})\,\!</math> | ||
:where: | :where: | ||
::<math>\ | ::<math>\hat{R}(d)={{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}\,\!</math> | ||
<math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> can be obtained from the equation for time terminated data in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Instantaneous_MTBF|Bounds on Instantaneous MTBF]] section. | <math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> can be obtained from the equation for time terminated data in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Instantaneous_MTBF|Bounds on Instantaneous MTBF]] section. | ||
Line 485: | Line 485: | ||
:where: | :where: | ||
::<math>Var(\hat{t})={{\left( \frac{\partial t}{\partial \beta } \right)}^{2}}Var(\ | ::<math>Var(\hat{t})={{\left( \frac{\partial t}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial t}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial t}{\partial \beta } \right)\left( \frac{\partial t}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | ||
<math>\hat{t}\,\!</math> is calculated numerically from: | <math>\hat{t}\,\!</math> is calculated numerically from: | ||
::<math>\ | ::<math>\hat{R}(d)={{e}^{-[\hat{\lambda }{{(\hat{t}+d)}^{\hat{\beta }}}-\hat{\lambda }{{{\hat{t}}}^{\hat{\beta }}}]}}\text{ };\text{ }d\text{ = mission time}\,\!</math> | ||
The variance calculations are done by: | The variance calculations are done by: | ||
Line 503: | Line 503: | ||
Step 1: Calculate <math>({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{p}_{1}}}}},{{R}^{\tfrac{1}{{{p}_{2}}}}})\,\!</math>. | Step 1: Calculate <math>({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{p}_{1}}}}},{{R}^{\tfrac{1}{{{p}_{2}}}}})\,\!</math>. | ||
Step 2: Let <math>R={{\hat{R}}_{lower}}\,\!</math> and solve numerically for <math>{{t}_{1}}\,\!</math> using <math>R={{e}^{-[\ | Step 2: Let <math>R={{\hat{R}}_{lower}}\,\!</math> and solve numerically for <math>{{t}_{1}}\,\!</math> using <math>R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{1}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{1}^{\hat{\beta }}]}}\,\!</math>. | ||
Step 3: Let <math>R={{\hat{R}}_{upper}}\,\!</math> and solve numerically for <math>{{t}_{2}}\,\!</math> using <math>R={{e}^{-[\ | Step 3: Let <math>R={{\hat{R}}_{upper}}\,\!</math> and solve numerically for <math>{{t}_{2}}\,\!</math> using <math>R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{2}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{2}^{\hat{\beta }}]}}\,\!</math>. | ||
Step 4: If <math>{{t}_{1}}<{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{1}}\,\!</math> and <math>{{t}_{upper}}={{t}_{2}}\,\!</math>. If <math>{{t}_{1}}>{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{2}}\,\!</math> and <math>{{t}_{upper}}={{t}_{1}}\,\!</math>. | Step 4: If <math>{{t}_{1}}<{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{1}}\,\!</math> and <math>{{t}_{upper}}={{t}_{2}}\,\!</math>. If <math>{{t}_{1}}>{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{2}}\,\!</math> and <math>{{t}_{upper}}={{t}_{1}}\,\!</math>. | ||
Line 514: | Line 514: | ||
Step 1: Calculate <math>({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{\Pi }_{1}}}}},{{R}^{\tfrac{1}{{{\Pi }_{2}}}}})\,\!</math>. | Step 1: Calculate <math>({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{\Pi }_{1}}}}},{{R}^{\tfrac{1}{{{\Pi }_{2}}}}})\,\!</math>. | ||
Step 2: Let <math>R={{\hat{R}}_{lower}}\,\!</math> and solve numerically for <math>{{t}_{1}}\,\!</math> using <math>R={{e}^{-[\ | Step 2: Let <math>R={{\hat{R}}_{lower}}\,\!</math> and solve numerically for <math>{{t}_{1}}\,\!</math> using <math>R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{1}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{1}^{\hat{\beta }}]}}\,\!</math>. | ||
Step 3: Let <math>R={{\hat{R}}_{upper}}\,\!</math> and solve numerically for <math>{{t}_{2}}\,\!</math> using <math>R={{e}^{-[\ | Step 3: Let <math>R={{\hat{R}}_{upper}}\,\!</math> and solve numerically for <math>{{t}_{2}}\,\!</math> using <math>R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{2}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{2}^{\hat{\beta }}]}}\,\!</math>. | ||
Step 4: If <math>{{t}_{1}}<{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{1}}\,\!</math> and <math>{{t}_{upper}}={{t}_{2}}\,\!</math>. If <math>{{t}_{1}}>{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{2}}\,\!</math> and <math>{{t}_{upper}}={{t}_{1}}\,\!</math>. | Step 4: If <math>{{t}_{1}}<{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{1}}\,\!</math> and <math>{{t}_{upper}}={{t}_{2}}\,\!</math>. If <math>{{t}_{1}}>{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{2}}\,\!</math> and <math>{{t}_{upper}}={{t}_{1}}\,\!</math>. | ||
Line 532: | Line 532: | ||
:where: | :where: | ||
::<math>Var(\hat{d})={{\left( \frac{\partial d}{\partial \beta } \right)}^{2}}Var(\ | ::<math>Var(\hat{d})={{\left( \frac{\partial d}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial d}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial td}{\partial \beta } \right)\left( \frac{\partial d}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | ||
Calculate <math>\hat{d}\,\!</math> from: | Calculate <math>\hat{d}\,\!</math> from: | ||
Line 575: | Line 575: | ||
The cumulative number of failures, <math>N(t)\,\!</math>. must be positive, thus <math>\ln \left( N(t) \right)\,\!</math> is approximately treated as being normally distributed. | The cumulative number of failures, <math>N(t)\,\!</math>. must be positive, thus <math>\ln \left( N(t) \right)\,\!</math> is approximately treated as being normally distributed. | ||
::<math>\frac{\ln (\ | ::<math>\frac{\ln (\hat{N}(t))-\ln (N(t))}{\sqrt{Var\left[ \ln \hat{N}(t) \right]}}\sim N(0,1)\,\!</math> | ||
::<math>N(t)=\ | ::<math>N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\!</math> | ||
:where: | :where: | ||
::<math>\ | ::<math>\hat{N}(t)=\hat{\lambda }{{t}^{\hat{\beta }}}\,\!</math> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Var(\ | Var(\hat{N}(t))= & {{\left( \frac{\partial N(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial N(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial N(t)}{\partial \beta } \right)\left( \frac{\partial N(t)}{\partial \lambda } \right)cov(\ | & +2\left( \frac{\partial N(t)}{\partial \beta } \right)\left( \frac{\partial N(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
Line 592: | Line 592: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
\frac{\partial N(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\ | \frac{\partial N(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }}}\ln (t) \\ | ||
\frac{\partial N(t)}{\partial \lambda }= & t\ | \frac{\partial N(t)}{\partial \lambda }= & t\hat{\beta } | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
=====Crow Bounds===== | =====Crow Bounds===== | ||
::<math>\begin{array}{*{35}{l}} | ::<math>\begin{array}{*{35}{l}} | ||
{{N}_{L}}(T)=\tfrac{T}{\ | {{N}_{L}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{L}} \\ | ||
{{N}_{U}}(T)=\tfrac{T}{\ | {{N}_{U}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{U}} \\ | ||
\end{array}\,\!</math> | \end{array}\,\!</math> | ||
where <math>{{\lambda }_{i}}{{(T)}_{L}}\,\!</math> and <math>{{\lambda }_{i}}{{(T)}_{U}}\,\!</math> can be obtained using the equation given in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Instantaneous_Failure_Intensity|Bounds on Instantaneous Failure Intensity]] section. | where <math>{{\lambda }_{i}}{{(T)}_{L}}\,\!</math> and <math>{{\lambda }_{i}}{{(T)}_{U}}\,\!</math> can be obtained using the equation given in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Instantaneous_Failure_Intensity|Bounds on Instantaneous Failure Intensity]] section. |
Revision as of 00:06, 30 January 2014
In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for Repairable Systems Analysis. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow.
Bounds on Beta
Fisher Matrix Bounds
The parameter [math]\displaystyle{ \beta \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \beta \,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{\beta })-\ln (\beta )}{\sqrt{Var\left[ \ln (\hat{\beta }) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
- [math]\displaystyle{ C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\! }[/math]
- [math]\displaystyle{ \hat{\beta }=\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{\hat{\lambda }\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\left[ (T_{q}^{\hat{\beta }}\ln ({{T}_{q}})-S_{q}^{\hat{\beta }}\ln ({{S}_{q}}) \right]-\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\underset{i=1}{\overset{{{N}_{q}}}{\mathop{\sum }}}\,\ln ({{X}_{i}}{{}_{q}})}\,\! }[/math]
All variance can be calculated using the Fisher Information Matrix.
[math]\displaystyle{ \Lambda \,\! }[/math] is the natural log-likelihood function.
- [math]\displaystyle{ \Lambda =\underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ {{N}_{q}}(\ln (\lambda )+\ln (\beta ))-\lambda (T_{q}^{\beta }-S_{q}^{\beta })+(\beta -1)\underset{i=1}{\overset{{{N}_{q}}}{\mathop \sum }}\,\ln ({{x}_{iq}}) \right]\,\! }[/math]
- [math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}=-\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{{{\lambda }^{2}}}\,\! }[/math]
- [math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }=-\underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ T_{q}^{\beta }\ln ({{T}_{q}})-S_{q}^{\beta }\ln ({{S}_{q}}) \right]\,\! }[/math]
- [math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}=-\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{{{\beta }^{2}}}-\lambda \underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ T_{q}^{\beta }{{(\ln ({{T}_{q}}))}^{2}}-S_{q}^{\beta }{{(\ln ({{S}_{q}}))}^{2}} \right]\,\! }[/math]
Crow Bounds
Calculate the conditional maximum likelihood estimate of [math]\displaystyle{ \tilde{\beta \,\!}\,\! }[/math] :
- [math]\displaystyle{ \tilde{\beta }=\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{M}_{q}}}{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\underset{i=1}{\overset{M}{\mathop{\sum }}}\,\ln \left( \tfrac{{{T}_{q}}}{{{X}_{iq}}} \right)}\,\! }[/math]
The Crow 2-sided [math]\displaystyle{ (1-a)\,\! }[/math] 100% confidence bounds on [math]\displaystyle{ \beta \,\! }[/math] are:
- [math]\displaystyle{ \begin{align} {{\beta }_{L}}= & \tilde{\beta }\frac{\chi _{\tfrac{\alpha }{2},2M}^{2}}{2M} \\ {{\beta }_{U}}= & \tilde{\beta }\frac{\chi _{1-\tfrac{\alpha }{2},2M}^{2}}{2M} \end{align}\,\! }[/math]
Bounds on Lambda
Fisher Matrix Bounds
The parameter [math]\displaystyle{ \lambda \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \lambda \,\! }[/math] is approximately treated as being normally distributed. These bounds are based on:
- [math]\displaystyle{ \frac{\ln (\hat{\lambda })-\ln (\lambda )}{\sqrt{Var\left[ \ln (\hat{\lambda }) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are given as:
- [math]\displaystyle{ C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\! }[/math]
where [math]\displaystyle{ \hat{\lambda }=\tfrac{n}{T_{K}^{{\hat{\beta }}}}\,\! }[/math].
The variance calculation is the same the equations given in the Bounds on Beta section.
Crow Bounds
Time Terminated
The confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] for time terminated data are calculated using:
- [math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \\ {{\lambda }_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \end{align}\,\! }[/math]
Failure Terminated
The confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] for failure terminated data are calculated using:
- [math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \\ {{\lambda }_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \end{align}\,\! }[/math]
Bounds on Growth Rate
Since the growth rate is equal to [math]\displaystyle{ 1-\beta \,\! }[/math]. the confidence bounds are:
- [math]\displaystyle{ \begin{align} Gr.\text{ }Rat{{e}_{L}}= & 1-{{\beta }_{U}} \\ Gr.\text{ }Rat{{e}_{U}}= & 1-{{\beta }_{L}} \end{align}\,\! }[/math]
[math]\displaystyle{ {{\beta }_{L}}\,\! }[/math] and [math]\displaystyle{ {{\beta }_{U}}\,\! }[/math] are obtained using the methods described above in the Bounds on Beta section.
Bounds on Cumulative MTBF
Fisher Matrix Bounds
The cumulative MTBF, [math]\displaystyle{ {{m}_{c}}(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln {{m}_{c}}(t)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln ({{\hat{m}}_{c}}(t))-\ln ({{m}_{c}}(t))}{\sqrt{Var\left[ \ln ({{\hat{m}}_{c}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the cumulative MTBF are then estimated from:
- [math]\displaystyle{ CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{m}}_{c}}(t))}/{{\hat{m}}_{c}}(t)}}\,\! }[/math]
- where:
- [math]\displaystyle{ {{\hat{m}}_{c}}(t)=\frac{1}{\hat{\lambda }}{{t}^{1-\hat{\beta }}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var({{\hat{m}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\, \end{align}\,\! }[/math]
The variance calculation is the same as the calculations given in the Bounds on Beta section.
- [math]\displaystyle{ \begin{align} \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }}{{t}^{1-\hat{\beta }}}\ln (t) \\ \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]
Crow Bounds
To calculate the Crow confidence bounds on cumulative MTBF, first calculate the Crow cumulative failure intensity confidence bounds:
- [math]\displaystyle{ C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\! }[/math]
- [math]\displaystyle{ C{{(t)}_{u}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\! }[/math]
- Then
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\ {{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}} \end{align}\,\! }[/math]
Bounds on Instantaneous MTBF
Fisher Matrix Bounds
The instantaneous MTBF, [math]\displaystyle{ {{m}_{i}}(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln {{m}_{i}}(t)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln ({{\hat{m}}_{i}}(t))-\ln ({{m}_{i}}(t))}{\sqrt{Var\left[ \ln ({{\hat{m}}_{i}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the instantaneous MTBF are then estimated from:
- [math]\displaystyle{ CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{m}}_{i}}(t))}/{{\hat{m}}_{i}}(t)}}\,\! }[/math]
- where:
- [math]\displaystyle{ {{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var({{\hat{m}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as the calculations given in the Bounds on Beta section.
- [math]\displaystyle{ \begin{align} \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{\hat{\beta }}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln (t) \\ \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]
Crow Bounds
Failure Terminated Data
To calculate the bounds for failure terminated data, consider the following equation:
- [math]\displaystyle{ G(\mu |n)=\mathop{}_{0}^{\infty }\frac{{{e}^{-x}}{{x}^{n-2}}}{(n-2)!}\underset{i=0}{\overset{n-1}{\mathop \sum }}\,\frac{1}{i!}{{\left( \frac{\mu }{x} \right)}^{i}}\exp (-\frac{\mu }{x})\,dx\,\! }[/math]
Find the values [math]\displaystyle{ {{p}_{1}}\,\! }[/math] and [math]\displaystyle{ {{p}_{2}}\,\! }[/math] by finding the solution [math]\displaystyle{ c\,\! }[/math] to [math]\displaystyle{ G({{n}^{2}}/c|n)=\xi \,\! }[/math] for [math]\displaystyle{ \xi =\tfrac{\alpha }{2}\,\! }[/math] and [math]\displaystyle{ \xi =1-\tfrac{\alpha }{2}\,\! }[/math]. respectively. If using the biased parameters, [math]\displaystyle{ \hat{\beta }\,\! }[/math] and [math]\displaystyle{ \hat{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{p}_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{p}_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math]. If using the unbiased parameters, [math]\displaystyle{ \bar{\beta }\,\! }[/math] and [math]\displaystyle{ \bar{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math].
Time Terminated Data
To calculate the bounds for time terminated data, consider the following equation where [math]\displaystyle{ {{I}_{1}}(.)\,\! }[/math] is the modified Bessel function of order one:
- [math]\displaystyle{ H(x|k)=\underset{j=1}{\overset{k}{\mathop \sum }}\,\frac{{{x}^{2j-1}}}{{{2}^{2j-1}}(j-1)!j!{{I}_{1}}(x)}\,\! }[/math]
Find the values [math]\displaystyle{ {{\Pi }_{1}}\,\! }[/math] and [math]\displaystyle{ {{\Pi }_{2}}\,\! }[/math] by finding the solution [math]\displaystyle{ x\,\! }[/math] to [math]\displaystyle{ H(x|k)=\tfrac{\alpha }{2}\,\! }[/math] and [math]\displaystyle{ H(x|k)=1-\tfrac{\alpha }{2}\,\! }[/math] in the cases corresponding to the lower and upper bounds, respectively.
Calculate [math]\displaystyle{ \Pi =\tfrac{{{n}^{2}}}{4{{x}^{2}}}\,\! }[/math] for each case. If using the biased parameters, [math]\displaystyle{ \hat{\beta }\,\! }[/math] and [math]\displaystyle{ \hat{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{\Pi }_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{\Pi }_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math]. If using the unbiased parameters, [math]\displaystyle{ \bar{\beta }\,\! }[/math] and [math]\displaystyle{ \bar{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math].
Bounds on Cumulative Failure Intensity
Fisher Matrix Bounds
The cumulative failure intensity, [math]\displaystyle{ {{\lambda }_{c}}(t)\,\! }[/math] must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{c}}(t)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln ({{\hat{\lambda }}_{c}}(t))-\ln ({{\lambda }_{c}}(t))}{\sqrt{Var\left[ \ln ({{\hat{\lambda }}_{c}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the cumulative failure intensity are then estimated using:
- [math]\displaystyle{ CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{\lambda }}_{c}}(t))}/{{\hat{\lambda }}_{c}}(t)}}\,\! }[/math]
- where:
- [math]\displaystyle{ {{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\! }[/math]
- and:
- [math]\displaystyle{ \begin{align} Var({{\hat{\lambda }}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as the calculations in the Bounds on Beta section.
- [math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln (t) \\ \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]
Crow Bounds
The Crow cumulative failure intensity confidence bounds are given by:
- [math]\displaystyle{ C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\! }[/math]
- [math]\displaystyle{ C{{(t)}_{u}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\! }[/math]
Bounds on Instantaneous Failure Intensity
Fisher Matrix Bounds
The instantaneous failure intensity, [math]\displaystyle{ {{\lambda }_{i}}(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{i}}(t)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln ({{\hat{\lambda }}_{i}}(t))-\ln ({{\lambda }_{i}}(t))}{\sqrt{Var\left[ \ln ({{\hat{\lambda }}_{i}}(t)) \right]}}\sim N(0,1)\,\! }[/math]
The approximate confidence bounds on the instantaneous failure intensity are then estimated from:
- [math]\displaystyle{ CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{\lambda }}_{i}}(t))}/{{\hat{\lambda }}_{i}}(t)}}\,\! }[/math]
where [math]\displaystyle{ {{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\! }[/math] and:
- [math]\displaystyle{ \begin{align} Var({{\hat{\lambda }}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as the calculations in the Bounds on Beta section.
- [math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln (t) \\ \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]
Crow Bounds
The Crow instantaneous failure intensity confidence bounds are given as:
- [math]\displaystyle{ \begin{align} {{[{{\lambda }_{i}}(t)]}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\ {{[{{\lambda }_{i}}(t)]}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}} \end{align}\,\! }[/math]
Bounds on Time Given Cumulative MTBF
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
- where:
- [math]\displaystyle{ Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
The variance calculation is the same as the calculations in the Bounds on Beta section.
- [math]\displaystyle{ \hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot {{m}_{c}})}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate:
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\! }[/math]
Step 2: Estimate the number of failures:
- [math]\displaystyle{ N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\! }[/math]
Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for [math]\displaystyle{ {{t}_{l}}\,\! }[/math] and [math]\displaystyle{ {{t}_{u}}\,\! }[/math] in the following equations:
- [math]\displaystyle{ \begin{align} & {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ & {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} \end{align}\,\! }[/math]
Bounds on Time Given Instantaneous MTBF
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
- where:
- [math]\displaystyle{ Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
The variance calculation is the same as the calculations in the Bounds on Beta section.
- [math]\displaystyle{ \hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot MTB{{F}_{i}} \right)}^{1/(1-\beta )}}[\frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot MTB{{F}_{i}})+\frac{1}{\beta (1-\beta )}] \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate the confidence bounds on the instantaneous MTBF as presented in Section 5.5.2.[Per Kate: THE SECTION 5.5.2 IS ABOUT THE CHI-SQUARED TEST FOR GROUPED DATA. NEED TO ASK SME TO VERIFY THE CORRECT SECTION TO LINK TO.]
Step 2: Calculate the bounds on time as follows.
Failure Terminated Data
- [math]\displaystyle{ \hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{c})}^{1/(1-\beta )}}\,\! }[/math]
So the lower an upper bounds on time are:
- [math]\displaystyle{ {{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{1}}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ {{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{2}}})}^{1/(1-\beta )}}\,\! }[/math]
Time Terminated Data
- [math]\displaystyle{ \hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{\Pi })}^{1/(1-\beta )}}\,\! }[/math]
So the lower and upper bounds on time are:
- [math]\displaystyle{ {{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{1}}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ {{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\! }[/math]
Bounds on Time Given Cumulative Failure Intensity
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln \hat{T} \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
- where:
- [math]\displaystyle{ Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
The variance calculation is the same as the calculations given in the Bounds on Beta section.
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate:
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\! }[/math]
Step 2: Estimate the number of failures:
- [math]\displaystyle{ N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\! }[/math]
Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for [math]\displaystyle{ {{t}_{l}}\,\! }[/math] and [math]\displaystyle{ {{t}_{u}}\,\! }[/math] in the following equations:
- [math]\displaystyle{ \begin{align} {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} \end{align}\,\! }[/math]
Bounds on Time Given Instantaneous Failure Intensity
Fisher Matrix Bounds
These bounds are based on:
- [math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\sim N(0,1)\,\! }[/math]
The confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
- where:
- [math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as the calculations given in the Bounds on Beta section.
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}[-\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )}] \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate [math]\displaystyle{ {{\lambda }_{i}}(T)=\tfrac{1}{MTB{{F}_{i}}}\,\! }[/math].
Step 2: Use the equations in the Bounds on Time Given Instantaneous MTBF section to calculate the bounds on time given the instantaneous failure intensity.
Bounds on Reliability
Fisher Matrix Bounds
These bounds are based on:
- [math]\displaystyle{ \log it(\hat{R}(t))\sim N(0,1)\,\! }[/math]
- [math]\displaystyle{ \log it(\hat{R}(t))=\ln \left\{ \frac{\hat{R}(t)}{1-\hat{R}(t)} \right\}\,\! }[/math]
The confidence bounds on reliability are given by:
- [math]\displaystyle{ CB=\frac{\hat{R}(t)}{\hat{R}(t)+(1-\hat{R}(t)){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{R}(t))}/\left[ \hat{R}(t)(1-\hat{R}(t)) \right]}}}\,\! }[/math]
- [math]\displaystyle{ Var(\hat{R}(t))={{\left( \frac{\partial R}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial R}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial R}{\partial \beta } \right)\left( \frac{\partial R}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
The variance calculation is the same as the calculations in the Bounds on Beta section.
- [math]\displaystyle{ \begin{align} \frac{\partial R}{\partial \beta }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[\lambda {{t}^{\hat{\beta }}}\ln (t)-\lambda {{(t+d)}^{\hat{\beta }}}\ln (t+d)] \\ \frac{\partial R}{\partial \lambda }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[{{t}^{\hat{\beta }}}-{{(t+d)}^{\hat{\beta }}}] \end{align}\,\! }[/math]
Crow Bounds
Failure Terminated Data
With failure terminated data, the 100( [math]\displaystyle{ 1-\alpha \,\! }[/math] )% confidence interval for the current reliability at time [math]\displaystyle{ t\,\! }[/math] in a specified mission time [math]\displaystyle{ d\,\! }[/math] is:
- [math]\displaystyle{ ({{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math]
- where
- [math]\displaystyle{ \hat{R}(\tau )={{e}^{-[\hat{\lambda }{{(t+\tau )}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}\,\! }[/math]
[math]\displaystyle{ {{p}_{1}}\,\! }[/math] and [math]\displaystyle{ {{p}_{2}}\,\! }[/math] can be obtained from the equation for failure terminated data in the Bounds on Instantaneous MTBF section.
Time Terminated Data
With time terminated data, the 100( [math]\displaystyle{ 1-\alpha \,\! }[/math] )% confidence interval for the current reliability at time [math]\displaystyle{ t\,\! }[/math] in a specified mission time [math]\displaystyle{ \tau \,\! }[/math] is:
- [math]\displaystyle{ ({{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math]
- where:
- [math]\displaystyle{ \hat{R}(d)={{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}\,\! }[/math]
[math]\displaystyle{ {{p}_{1}}\,\! }[/math] and [math]\displaystyle{ {{p}_{2}}\,\! }[/math] can be obtained from the equation for time terminated data in the Bounds on Instantaneous MTBF section.
Bounds on Time Given Reliability and Mission Time
Fisher Matrix Bounds
The time, [math]\displaystyle{ t\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln t\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{t})-\ln (t)}{\sqrt{Var\left[ \ln (\hat{t}) \right]}}\sim N(0,1)\,\! }[/math]
The confidence bounds on time are calculated by using:
- [math]\displaystyle{ CB=\hat{t}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{t})}/\hat{t}}}\,\! }[/math]
- where:
- [math]\displaystyle{ Var(\hat{t})={{\left( \frac{\partial t}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial t}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial t}{\partial \beta } \right)\left( \frac{\partial t}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
[math]\displaystyle{ \hat{t}\,\! }[/math] is calculated numerically from:
- [math]\displaystyle{ \hat{R}(d)={{e}^{-[\hat{\lambda }{{(\hat{t}+d)}^{\hat{\beta }}}-\hat{\lambda }{{{\hat{t}}}^{\hat{\beta }}}]}}\text{ };\text{ }d\text{ = mission time}\,\! }[/math]
The variance calculations are done by:
- [math]\displaystyle{ \begin{align} \frac{\partial t}{\partial \beta }= & \frac{{{{\hat{t}}}^{{\hat{\beta }}}}\ln (\hat{t})-{{(\hat{t}+d)}^{{\hat{\beta }}}}\ln (\hat{t}+d)}{\hat{\beta }{{(\hat{t}+d)}^{\hat{\beta }-1}}-\hat{\beta }{{{\hat{t}}}^{\hat{\beta }-1}}} \\ \frac{\partial t}{\partial \lambda }= & \frac{{{{\hat{t}}}^{{\hat{\beta }}}}-{{(\hat{t}+d)}^{{\hat{\beta }}}}}{\hat{\lambda }\hat{\beta }{{(\hat{t}+d)}^{\hat{\beta }-1}}-\hat{\lambda }\hat{\beta }{{{\hat{t}}}^{\hat{\beta }-1}}} \end{align}\,\! }[/math]
Crow Bounds
Failure Terminated Data
Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{p}_{1}}}}},{{R}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math].
Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{1}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{1}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{1}^{\hat{\beta }}]}}\,\! }[/math].
Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{2}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{2}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{2}^{\hat{\beta }}]}}\,\! }[/math].
Step 4: If [math]\displaystyle{ {{t}_{1}}\lt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{1}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{t}_{1}}\gt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{2}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{1}}\,\! }[/math].
Time Terminated Data
Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{\Pi }_{1}}}}},{{R}^{\tfrac{1}{{{\Pi }_{2}}}}})\,\! }[/math].
Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{1}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{1}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{1}^{\hat{\beta }}]}}\,\! }[/math].
Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{2}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{2}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{2}^{\hat{\beta }}]}}\,\! }[/math].
Step 4: If [math]\displaystyle{ {{t}_{1}}\lt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{1}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{t}_{1}}\gt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{2}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{1}}\,\! }[/math].
Bounds on Mission Time Given Reliability and Time
Fisher Matrix Bounds
The mission time, [math]\displaystyle{ d\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln \left( d \right)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{d})-\ln (d)}{\sqrt{Var\left[ \ln (\hat{d}) \right]}}\sim N(0,1)\,\! }[/math]
The confidence bounds on mission time are given by using:
- [math]\displaystyle{ CB=\hat{d}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{d})}/\hat{d}}}\,\! }[/math]
- where:
- [math]\displaystyle{ Var(\hat{d})={{\left( \frac{\partial d}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial d}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial td}{\partial \beta } \right)\left( \frac{\partial d}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
Calculate [math]\displaystyle{ \hat{d}\,\! }[/math] from:
- [math]\displaystyle{ \hat{d}={{\left[ {{t}^{{\hat{\beta }}}}-\frac{\ln (R)}{{\hat{\lambda }}} \right]}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\! }[/math]
The variance calculations are done by:
- [math]\displaystyle{ \begin{align} \frac{\partial d}{\partial \beta }= & \left[ \frac{{{t}^{{\hat{\beta }}}}\ln (t)}{{{(t+\hat{d})}^{{\hat{\beta }}}}}-\ln (t+\hat{d}) \right]\cdot \frac{t+\hat{d}}{{\hat{\beta }}} \\ \frac{\partial d}{\partial \lambda }= & \frac{{{t}^{{\hat{\beta }}}}-{{(t+\hat{d})}^{{\hat{\beta }}}}}{\hat{\lambda }\hat{\beta }{{(t+\hat{d})}^{\hat{\beta }-1}}} \end{align}\,\! }[/math]
Crow Bounds
Failure Terminated Data
Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{p}_{1}}}}},{{R}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math].
Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{1}}\,\! }[/math] such that:
- [math]\displaystyle{ {{d}_{1}}={{\left( {{t}^{{\hat{\beta }}}}-\frac{\ln ({{R}_{lower}})}{{\hat{\lambda }}} \right)}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\! }[/math]
Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{2}}\,\! }[/math] such that:
- [math]\displaystyle{ {{d}_{2}}={{\left( {{t}^{{\hat{\beta }}}}-\frac{\ln ({{R}_{upper}})}{{\hat{\lambda }}} \right)}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\! }[/math]
Step 4: If [math]\displaystyle{ {{d}_{1}}\lt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{1}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{d}_{1}}\gt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{2}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{1}}\,\! }[/math].
Time Terminated Data
Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{\Pi }_{1}}}}},{{R}^{\tfrac{1}{{{\Pi }_{2}}}}})\,\! }[/math].
Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{1}}\,\! }[/math] using the same equation given for the failure terminated data.
Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{2}}\,\! }[/math] using the same equation given for the failure terminated data.
Step 4: If [math]\displaystyle{ {{d}_{1}}\lt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{1}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{d}_{1}}\gt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{2}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{1}}\,\! }[/math].
Bounds on Cumulative Number of Failures
Fisher Matrix Bounds
The cumulative number of failures, [math]\displaystyle{ N(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln \left( N(t) \right)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{N}(t))-\ln (N(t))}{\sqrt{Var\left[ \ln \hat{N}(t) \right]}}\sim N(0,1)\,\! }[/math]
- [math]\displaystyle{ N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\! }[/math]
- where:
- [math]\displaystyle{ \hat{N}(t)=\hat{\lambda }{{t}^{\hat{\beta }}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var(\hat{N}(t))= & {{\left( \frac{\partial N(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial N(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial N(t)}{\partial \beta } \right)\left( \frac{\partial N(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as the calculations in the Bounds on Beta section.
- [math]\displaystyle{ \begin{align} \frac{\partial N(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }}}\ln (t) \\ \frac{\partial N(t)}{\partial \lambda }= & t\hat{\beta } \end{align}\,\! }[/math]
Crow Bounds
- [math]\displaystyle{ \begin{array}{*{35}{l}} {{N}_{L}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{L}} \\ {{N}_{U}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{U}} \\ \end{array}\,\! }[/math]
where [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{L}}\,\! }[/math] and [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{U}}\,\! }[/math] can be obtained using the equation given in the Bounds on Instantaneous Failure Intensity section.