| 
				     | 
				
| (6 intermediate revisions by 3 users not shown) | 
| Line 1: | 
Line 1: | 
 | {{Probability Plotting}}
  |  | [[Category:For Deletion]]  | 
 |    |  | 
 |    |  | 
 |    |  | 
 |    |  | 
 | One method of calculating the parameter of the exponential distribution is by using probability plotting. To better illustrate this procedure, consider the following example.
  |  | 
 |    |  | 
 | <br>
  |  | 
 |    |  | 
 |    |  | 
 |    |  | 
 |    |  | 
 | {{Example:Probability Plotting:Exponential[1]}}
  |  | 
 |    |  | 
 | ====Example 1====
  |  | 
 | <br>
  |  | 
 |    |  | 
 | Let's assume six identical units are reliability tested at the same application and operation
  |  | 
 | stress levels. All of these units fail during the test after operating for the following times (in hours),  <math>{{T}_{i}}</math> : 96, 257, 498, 763, 1051 and 1744.
  |  | 
 | <br>
  |  | 
 | The steps for determining the parameters of the exponential  <math>pdf</math>  representing the
  |  | 
 | data, using probability plotting, are as follows:
  |  | 
 | <br>
  |  | 
 | ::•	Rank the times-to-failure in ascending order as shown next.
  |  | 
 | <br>
  |  | 
 |    |  | 
 | ::<math>\begin{matrix}
  |  | 
 |    \text{Time-to-} & \text{Failure Order Number}  \\
  |  | 
 |    \text{failure, hr} & \text{out of a Sample Size of 6}  \\
  |  | 
 |    \text{96} & \text{1}  \\
  |  | 
 |    \text{257} & \text{2}  \\
  |  | 
 |    \text{498} & \text{3}  \\
  |  | 
 |    \text{763} & \text{4}  \\
  |  | 
 |    \text{1,051} & \text{5}  \\
  |  | 
 |    \text{1,744} & \text{6}  \\
  |  | 
 |  \end{matrix}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::•	Obtain their median rank plotting positions.
  |  | 
 | <br>
  |  | 
 | Median rank  positions are used instead of other ranking methods because median ranks are at a
  |  | 
 | specific confidence level (50%).
  |  | 
 | <br>
  |  | 
 | ::•	The times-to-failure, with their corresponding median ranks, are shown next:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\begin{matrix}
  |  | 
 |    \text{Time-to-} & \text{Median}  \\
  |  | 
 |    \text{failure, hr} & \text{Rank, }%  \\
  |  | 
 |    \text{96} & \text{10}\text{.91}  \\
  |  | 
 |    \text{257} & \text{26}\text{.44}  \\
  |  | 
 |    \text{498} & \text{42}\text{.14}  \\
  |  | 
 |    \text{763} & \text{57}\text{.86}  \\
  |  | 
 |    \text{1,051} & \text{73}\text{.56}  \\
  |  | 
 |    \text{1,744} & \text{89}\text{.10}  \\
  |  | 
 |  \end{matrix}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::•	On an exponential probability paper, plot the times on the x-axis and their corresponding
  |  | 
 | rank value on the y-axis. Fig. 4 displays an example of an exponential probability paper. The
  |  | 
 | paper is simply a log-linear paper. (The solution is given in Fig. 2.)
  |  | 
 | <br>
  |  | 
 | [[File:ALTA4.1.gif|center]]
  |  | 
 | <br>
  |  | 
 | <center>Fig. 4: Sample exponential probability paper.</center>
  |  | 
 | <br>
  |  | 
 | ::•	Draw the best possible straight line that goes through the  <math>t=0</math>  and  <math>
  |  | 
 | (t)=100%</math>  point and through the plotted points (as shown in Fig. 5).
  |  | 
 | <br>
  |  | 
 | ::•	At the  <math>Q(t)=63.2%</math>  or  <math>R(t)=36.8%</math>  ordinate point, draw a
  |  | 
 | straight horizontal line until this line intersects the fitted straight line. Draw a vertical line through this intersection until it crosses the abscissa. The value at the intersection of the abscissa is the estimate of the mean. For this case,  <math>\widehat{\mu }=833</math>  hr which means that  <math>\lambda =\tfrac{1}{\mu }=0.0012</math> . (This is always at 63.2% since  <math>(T)=1-{{e}^{-\tfrac{\mu }{\mu }}}=1-{{e}^{-1}}=0.632=63.2%).</math> 
  |  | 
 | <br>
  |  | 
 | [[File:ALTA4.2.gif|center]]  |  | 
 | <br>
  |  | 
 | <center>Fig. 5: Probability plot for Example 1.</center>
  |  | 
 | <br>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | Now any reliability value for any mission time  <math>t</math>  can be obtained. For example, the
  |  | 
 | reliability for a mission of 15 hr, or any other time, can now be obtained either from the plot or analytically (i.e. using the equations given in Section  <math>5.1.1</math> ).
  |  | 
 |    |  | 
 | <br>
  |  | 
 | To obtain the value from the plot, draw a vertical line from the abscissa, at  <math>t=15</math> 
  |  | 
 | hr, to the fitted line. Draw a horizontal line from this intersection to the ordinate and read 
  |  | 
 | <math>R(t)</math> . In this case,  <math>R(t=15)=98.15%</math> . This can also be obtained
  |  | 
 | analytically, from the exponential reliability function.
  |  | 
 |    |  | 
 | <br>
  |  | 
 |    |  | 
 | ====MLE Parameter Estimation====
  |  | 
 |    |  | 
 | <br>
  |  | 
 | The parameter of the exponential distribution can also be estimated using the maximum likelihood estimation (MLE) method. This log-likelihood function is: 
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\ln (L)=\Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \lambda {{e}^{-\lambda {{T}_{i}}}} \right]-\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\lambda T_{i}^{\prime }+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }]</math>
  |  | 
 | <br>
  |  | 
 | where: 
  |  | 
 | <br>
  |  | 
 | ::<math>R_{Li}^{\prime \prime }={{e}^{-\lambda T_{Li}^{\prime \prime }}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>R_{Ri}^{\prime \prime }={{e}^{-\lambda T_{Ri}^{\prime \prime }}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | and
  |  | 
 | <br>
  |  | 
 | ::•	 <math>{{F}_{e}}</math>  is the number of groups of times-to-failure data points.
  |  | 
 | ::•	 <math>{{N}_{i}}</math>  is the number of times-to-failure in the  <math>{{i}^{th}}</math>  time-to-failure data group.
  |  | 
 | ::•	 <math>\lambda </math>  is the failure rate parameter (unknown a priori, the only parameter to be found).
  |  | 
 | ::•	 <math>{{T}_{i}}</math>  is the time of the  <math>{{i}^{th}}</math>  group of time-to-failure data.
  |  | 
 | ::•	 <math>S</math>  is the number of groups of suspension data points.
  |  | 
 | ::•	 <math>N_{i}^{\prime }</math>  is the number of suspensions in the  <math>{{i}^{th}}</math>  group of suspension data points.
  |  | 
 | ::•	 <math>T_{i}^{\prime }</math>  is the time of the  <math>{{i}^{th}}</math>  suspension data group.
  |  | 
 | ::•	 <math>FI</math>  is the number of interval data groups.
  |  | 
 | ::•	 <math>N_{i}^{\prime \prime }</math>  is the number of intervals in the i <math>^{th}</math>  group of data intervals.
  |  | 
 | ::•	 <math>T_{Li}^{\prime \prime }</math>  is the beginning of the i <math>^{th}</math>  interval.
  |  | 
 | ::•	 <math>T_{Ri}^{\prime \prime }</math>  is the ending of the i <math>^{th}</math>  interval.
  |  | 
 |    |  | 
 | <br>
  |  | 
 | The solution will be found by solving for a parameter  <math>\widehat{\lambda }</math>  so that  <math>\tfrac{\partial \Lambda }{\partial \lambda }=0</math>  where:
  |  | 
 | <br>
  |  | 
 | ::<math>\frac{\partial \Lambda }{\partial \lambda }=\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\left( \frac{1}{\lambda }-{{T}_{i}} \right)-\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }T_{i}^{\prime }-\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{T_{Li}^{\prime \prime }R_{Li}^{\prime \prime }-T_{Ri}^{\prime \prime }R_{Ri}^{\prime \prime }}{R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 |    |  | 
 | ====Example 2====
  |  | 
 |    |  | 
 | <br>
  |  | 
 | Using the same data as in the probability plotting example (Example 1), and assuming an exponential distribution, estimate the parameter using the MLE method.
  |  | 
 | <br>
  |  | 
 | ''Solution''
  |  | 
 | <br>
  |  | 
 | In this example we have non-grouped data without suspensions. Thus Eqn. (exp-mle) becomes:
  |  | 
 | <br>
  |  | 
 | ::<math>\frac{\partial \Lambda }{\partial \lambda }=\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,\left[ \frac{1}{\lambda }-\left( {{T}_{i}} \right) \right]=\underset{i=1}{\overset{14}{\mathop \sum }}\,\left[ \frac{1}{\lambda }-\left( {{T}_{i}} \right) \right]=0</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | Substituting the values for  <math>T</math>  we get:
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>\begin{align}
  |  | 
 |    \frac{6}{\lambda }= & 4409,\text{ or:} \\ 
  |  | 
 |   \lambda = & 0.00136\text{ failure/hr}  
  |  | 
 | \end{align}</math>
  |  |