|
|
Line 1: |
Line 1: |
| ===Weibull Log-Likelihood Functions and their Partials===
| | #REDIRECT [[Appendix:_Log-Likelihood_Equations]] |
| | |
| ====The Two-Parameter Weibull====
| |
| This log-likelihood function is composed of three summation portions:
| |
| | |
| ::<math>\begin{align}
| |
| & \ln (L)= & \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \frac{\beta }{\eta }{{\left( \frac{{{T}_{i}}}{\eta } \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{{{T}_{i}}}{\eta } \right)}^{\beta }}}} \right]-\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }}{\eta } \right)}^{\beta }} \\
| |
| & & \text{ }+\underset{i=1}{\overset{FI}{\mathop \sum }}\,N_{i}^{\prime \prime }\ln \left[ {{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }}{\eta } \right)}^{\beta }}}}-{{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }}{\eta } \right)}^{\beta }}}} \right]
| |
| \end{align}</math>
| |
| | |
| :where:
| |
| ::• <math>{{F}_{e}}</math> is the number of groups of times-to-failure data points
| |
| ::• <math>{{N}_{i}}</math> is the number of times-to-failure in the <math>{{i}^{th}}</math> time-to-failure data group
| |
| ::• <math>\beta </math> is the Weibull shape parameter (unknown a priori, the first of two parameters to be found)
| |
| ::• <math>\eta </math> is the Weibull scale parameter (unknown a priori, the second of two parameters to be found)
| |
| ::• <math>{{T}_{i}}</math> is the time of the <math>{{i}^{th}}</math> group of time-to-failure data
| |
| ::• <math>S</math> is the number of groups of suspension data points
| |
| ::• <math>N_{i}^{\prime }</math> is the number of suspensions in <math>{{i}^{th}}</math> group of suspension data points
| |
| ::• <math>T_{i}^{\prime }</math> is the time of the <math>{{i}^{th}}</math> suspension data group
| |
| ::• <math>FI</math> is the number of interval failure data groups
| |
| ::• <math>N_{i}^{\prime \prime }</math> is the number of intervals in <math>{{i}^{th}}</math> group of data intervals
| |
| ::• <math>T_{Li}^{\prime \prime }</math> is the beginning of the <math>{{i}^{th}}</math> interval
| |
| ::• and <math>T_{Ri}^{\prime \prime }</math> is the ending of the <math>{{i}^{th}}</math> interval
| |
| | |
| | |
| For the purposes of MLE, left censored data will be considered to be intervals with <math>T_{Li}^{\prime \prime }=0.</math>
| |
| | |
| The solution will be found by solving for a pair of parameters <math>\left( \widehat{\beta },\widehat{\eta } \right)</math> so that <math>\tfrac{\partial \Lambda }{\partial \beta }=0</math> and <math>\tfrac{\partial \Lambda }{\partial \eta }=0.</math> It should be noted that other methods can also be used, such as direct maximization of the likelihood function, without having to compute the derivatives.
| |
| | |
| ::<math>\begin{align}
| |
| & \frac{\partial \Lambda }{\partial \beta }= & \frac{1}{\beta }\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}+\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\ln \left( \frac{{{T}_{i}}}{\eta } \right) \\
| |
| & & -\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}{{\left( \frac{{{T}_{i}}}{\eta } \right)}^{\beta }}\ln \left( \frac{{{T}_{i}}}{\eta } \right)-\underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }}{\eta } \right)}^{\beta }}\ln \left( \frac{T_{i}^{\prime }}{\eta } \right) \\
| |
| & & +\underset{i=1}{\overset{FI}{\mathop{\sum }}}\,N_{i}^{\prime \prime }\frac{-{{\left( \tfrac{T_{Li}^{\prime \prime }}{\eta } \right)}^{\beta }}\ln \left( \tfrac{T_{Li}^{\prime \prime }}{\eta } \right){{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }}{\eta } \right)}^{\beta }}}}+{{\left( \tfrac{T_{Ri}^{\prime \prime }}{\eta } \right)}^{\beta }}\ln \left( \tfrac{T_{Ri}^{\prime \prime }}{\eta } \right){{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }}{\eta } \right)}^{\beta }}}}}{{{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }}{\eta } \right)}^{\beta }}}}-{{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }}{\eta } \right)}^{\beta }}}}}
| |
| \end{align}</math>
| |
| | |
| ::<math>\begin{align}
| |
| & \frac{\partial \Lambda }{\partial \eta }= & \frac{-\beta }{\eta }\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}+\frac{\beta }{\eta }\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}{{\left( \frac{{{T}_{i}}}{\eta } \right)}^{\beta }} \\
| |
| & & +\frac{\beta }{\eta }\underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }}{\eta } \right)}^{\beta }} \\
| |
| & & +\underset{i=1}{\overset{FI}{\mathop{\sum }}}\,N_{i}^{\prime \prime }\frac{\left( \tfrac{\beta }{\eta } \right){{\left( \tfrac{T_{Li}^{\prime \prime }}{\eta } \right)}^{\beta }}{{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }}{\eta } \right)}^{\beta }}}}-\left( \tfrac{\beta }{\eta } \right){{\left( \tfrac{T_{Ri}^{\prime \prime }}{\eta } \right)}^{\beta }}{{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }}{\eta } \right)}^{\beta }}}}}{{{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }}{\eta } \right)}^{\beta }}}}-{{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }}{\eta } \right)}^{\beta }}}}}
| |
| \end{align}</math>
| |
| <br>
| |
| | |
| ==== The Three-Parameter Weibull====
| |
| This log-likelihood function is again composed of three summation portions:
| |
| | |
| ::<math>\begin{align}
| |
| & \ln (L)= & \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \frac{\beta }{\eta }{{\left( \frac{{{T}_{i}}-\gamma }{\eta } \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{{{T}_{i}}-\gamma }{\eta } \right)}^{\beta }}}} \right]-\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }-\gamma }{\eta } \right)}^{\beta }} \\
| |
| & & \\
| |
| & & +\underset{i=1}{\overset{FI}{\mathop \sum }}\,N_{i}^{\prime \prime }\ln \left[ {{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}-{{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}} \right]
| |
| \end{align}</math>
| |
| | |
| :where,
| |
| ::• <math>{{F}_{e}}</math> is the number of groups of times-to-failure data points
| |
| ::• <math>{{N}_{i}}</math> is the number of times-to-failure in the <math>{{i}^{th}}</math> time-to-failure data group
| |
| ::• <math>\beta </math> is the Weibull shape parameter (unknown a priori, the first of three parameters to be found)
| |
| ::• <math>\eta </math> is the Weibull scale parameter (unknown a priori, the second of three parameters to be found)
| |
| ::• <math>{{T}_{i}}</math> is the time of the <math>{{i}^{th}}</math> group of time-to-failure data
| |
| ::• <math>\gamma </math> is the Weibull location parameter (unknown a priori, the third of three parameters to be found)
| |
| ::• <math>S</math> is the number of groups of suspension data points
| |
| ::• <math>N_{i}^{\prime }</math> is the number of suspensions in <math>{{i}^{th}}</math> group of suspension data points
| |
| ::• <math>T_{i}^{\prime }</math> is the time of the <math>{{i}^{th}}</math> suspension data group
| |
| ::• <math>FI</math> is the number of interval data groups
| |
| ::• <math>N_{i}^{\prime \prime }</math> is the number of intervals in the <math>{{i}^{th}}</math> group of data intervals
| |
| ::• <math>T_{Li}^{\prime \prime }</math> is the beginning of the <math>{{i}^{th}}</math> interval
| |
| ::• and <math>T_{Ri}^{\prime \prime }</math> is the ending of the <math>{{i}^{th}}</math> interval
| |
| | |
| The solution is found by solving for <math>\left( \widehat{\beta },\widehat{\eta },\widehat{\gamma } \right)</math> so that <math>\tfrac{\partial \Lambda }{\partial \beta }=0,</math>
| |
| | |
| ::<math>\tfrac{\partial \Lambda }{\partial \eta }=0,</math> and <math>\tfrac{\partial \Lambda }{\partial \gamma }=0.</math>
| |
| | |
| | |
| ::<math>\begin{align}
| |
| & \frac{\partial \Lambda }{\partial \beta }= & \frac{1}{\beta }\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}+\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\ln \left( \frac{{{T}_{i}}-\gamma }{\eta } \right)-\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}{{\left( \frac{{{T}_{i}}-\gamma }{\eta } \right)}^{\beta }}\ln \left( \frac{{{T}_{i}}-\gamma }{\eta } \right) \\
| |
| & & -\underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }-\gamma }{\eta } \right)}^{\beta }}\ln \left( \frac{T_{i}^{\prime }-\gamma }{\eta } \right) \\
| |
| & & +\underset{i=1}{\overset{FI}{\mathop{\sum }}}\,N_{i}^{\prime \prime }\frac{-{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}\ln \left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right){{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}}{{{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}-{{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}} \\
| |
| & & +\underset{i=1}{\overset{FI}{\mathop{\sum }}}\,N_{i}^{\prime \prime }\frac{{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}\ln \left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right){{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}}{{{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}-{{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}}
| |
| \end{align}</math>
| |
| | |
| ::<math>\begin{align}
| |
| & \frac{\partial \Lambda }{\partial \eta }= & \frac{-\beta }{\eta }\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}+\frac{\beta }{\eta }\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}{{\left( \frac{{{T}_{i}}-\gamma }{\eta } \right)}^{\beta }}+\underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }-\gamma }{\eta } \right)}^{\beta }}\left( \frac{\beta }{\eta } \right) \\
| |
| & & +\underset{i=1}{\overset{FI}{\mathop{\sum }}}\,N_{i}^{\prime \prime }\frac{\tfrac{\beta }{\eta }{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}\ln \left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right){{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}}{{{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}-{{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}} \\
| |
| & & -\underset{i=1}{\overset{FI}{\mathop{\sum }}}\,N_{i}^{\prime \prime }\frac{\tfrac{\beta }{\eta }{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}\ln \left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right){{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}}{{{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}-{{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}}
| |
| \end{align}</math>
| |
| | |
| ::<math>\begin{align}
| |
| & \frac{\partial \Lambda }{\partial \gamma }= & \left( 1-\beta \right)\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,\left( \frac{{{N}_{i}}}{{{T}_{i}}-\gamma } \right)+\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}{{\left( \frac{{{T}_{i}}-\gamma }{\eta } \right)}^{\beta }}\left( \frac{\beta }{{{T}_{i}}-\gamma } \right) \\
| |
| & & +\underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }-\gamma }{\eta } \right)}^{\beta }}\left( \frac{\beta }{T_{i}^{\prime }-\gamma } \right) \\
| |
| & & +\underset{i=1}{\overset{FI}{\mathop{\sum }}}\,N_{i}^{\prime \prime }\frac{\tfrac{\beta }{T_{Li}^{\prime \prime }-\gamma }{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}{{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}-\tfrac{\beta }{T_{Ri}^{\prime \prime }-\gamma }{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}{{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}}{{{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}-{{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }-\gamma }{\eta } \right)}^{\beta }}}}}
| |
| \end{align}</math>
| |
| | |
| | |
| It should be pointed out that the solution to the three-parameter Weibull via MLE is not always stable and can collapse if <math>\beta \sim 1.</math> In estimating the true MLE of the three-parameter Weibull distribution, two difficulties arise. The first is a problem of non-regularity and the second is the parameter divergence problem [14].
| |
| | |
| Non-regularity occurs when <math>\beta \le 2.</math> In general, there are no MLE solutions in the region of <math>0<\beta <1.</math> When <math>1<\beta <2,</math> MLE solutions exist but are not asymptotically normal [14]. In the case of non-regularity, the solution is treated anomalously.
| |
| | |
| Weibull++ attempts to find a solution in all of the regions using a variety of methods, but the user should be forewarned that not all possible data can be addressed. Thus, some solutions using MLE for the three-parameter Weibull will fail when the algorithm has reached predefined limits or fails to converge. In these cases, the user can change to the non-true MLE approach (in Weibull++ User Setup), where <math>\gamma </math> is estimated using non-linear regression. Once <math>\gamma </math> is obtained, the MLE estimates of <math>\widehat{\beta }</math> and <math>\widehat{\eta }</math> are computed using the transformation <math>T_{i}^{\prime }=({{T}_{i}}-\gamma ).</math>
| |