| 
				     | 
				
| (12 intermediate revisions by 5 users not shown) | 
| Line 1: | 
Line 1: | 
 | {{Template:NoSkin}}
  |  | #REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_Eyring]]  | 
 | {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
  |  | 
 | |-
  |  | 
 | | valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
  |  | 
 | |}
  |  | 
 | {|  class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
  |  | 
 | |-
  |  | 
 | |  valign="middle" |{{Font|Standard Folio Data Eyring-Exponential|11|tahoma|bold|gray}}
  |  | 
 | |-
  |  | 
 | | valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
  |  | 
 | |-
  |  | 
 | |  valign="middle" |
  |  | 
 | The <math>pdf</math> of the 1-parameter exponential distribution is given by:
  |  | 
 | <br>
  |  | 
 | <math>f(t)=\lambda \cdot {{e}^{-\lambda \cdot t}}</math>
  |  | 
 | <br>
  |  | 
 | It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
  |  | 
 | <br>
  |  | 
 | <math>\lambda =\frac{1}{m}</math>
  |  | 
 | <br>
  |  | 
 | thus:
  |  | 
 | <br>
  |  | 
 | <math>f(t)=\frac{1}{m}\cdot {{e}^{-\tfrac{t}{m}}}</math>
  |  | 
 | <br>
  |  | 
 | The Eyring-exponential model  <math>pdf</math>  can then be obtained by setting  <math>m=L(V)</math>  in Eqn. (eyring): 
  |  | 
 | <br>
  |  | 
 | <math>m=L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math>
  |  | 
 | <br>
  |  | 
 | and substituting for  <math>m</math>  in Eqn. (pdfexpm2):
  |  | 
 | <br>
  |  | 
 | <math>f(t,V)=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}\cdot t}}</math>
  |  | 
 | |-
  |  | 
 | | valign="middle" | [http://reliawiki.com/index.php/Template:Alta_a-e.e-e#Eyring-Exponential Get More Details...]
  |  | 
 |    |  | 
 | |}
  |  | 
 |    |  | 
 | <br> 
  |  | 
 |    |  | 
 |    |  | 
 | [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Exponential&action=edit]]
  |  |