| 
				     | 
				
| (12 intermediate revisions by 4 users not shown) | 
| Line 1: | 
Line 1: | 
 | {{Template:NoSkin}}
  |  | #REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_PowerLaw]]  | 
 | {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
  |  | 
 | |-
  |  | 
 | ! scope="col" | 
  |  | 
 | {{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
  |  | 
 | |-
  |  | 
 | | align="center" valign="middle" |{{Font|Standard Folio Data IPL-Exponential|11|tahoma|bold|gray}}
  |  | 
 | |-
  |  | 
 | | align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
  |  | 
 | |-
  |  | 
 | | align="center" valign="middle" |
  |  | 
 | ==IPL-Exponential==
  |  | 
 | <br>
  |  | 
 | The IPL-exponential model can be derived by setting  <math>m=L(V)</math>  in Eqn. (inverse), yielding the following IPL-exponential  <math>pdf</math> :
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>f(t,V)=K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | Note that this is a 2-parameter model. The failure rate (the parameter of the exponential distribution) of the model is simply  <math>\lambda =K{{V}^{n}},</math>  and is only a function of stress.
  |  | 
 | <br>
  |  | 
 | [[Image:ALTA8.4.gif|thumb|center|300px|IPL-exponential failure rate function at different stress levels.]]
  |  | 
 |    |  | 
 | |-
  |  | 
 | | align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_exponential#IPL-Exponential Get More Details...]
  |  | 
 | |-
  |  | 
 | | align="center" valign="middle" | [Link2 See Examples...]
  |  | 
 | |}
  |  | 
 |    |  | 
 | <br> 
  |  | 
 |    |  | 
 |    |  | 
 | [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_IPL-Exponential&action=edit]]
  |  |