| 
				     | 
				
| (12 intermediate revisions by 4 users not shown) | 
| Line 1: | 
Line 1: | 
 | {{Template:NoSkin}}
  |  | #REDIRECT [[Template:WebNotes/ALTAALTA_Standard_Folio_Data_PHazards]]  | 
 | {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
  |  | 
 | |-
  |  | 
 | ! scope="col" | 
  |  | 
 | {{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
  |  | 
 | |-
  |  | 
 | | align="center" valign="middle" |{{Font|Standard Folio Data PPH-Weibull|11|tahoma|bold|gray}}
  |  | 
 | |-
  |  | 
 | | align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
  |  | 
 | |-
  |  | 
 | | align="center" valign="middle" |
  |  | 
 | Solving for the parameters that maximize Eqn. (PH LKV) will yield the parameters for the PH-Weibull model. Note that for  <math>\beta </math>  = 1, Eqn. (PH LKV) becomes the likelihood function for the PH-exponential model, which is similar to the original form of the proportional hazards model proposed by Cox [28].
  |  | 
 | <br>
  |  | 
 | Note that the likelihood function given by Eqn. (GLL-LK) is very similar to the likelihood function for the proportional hazards-Weibull model given by Eqn. (PH LKV). In particular, the shape parameter of the Weibull distribution can be included in the regression coefficients of Eqn. (13) as follows: 
  |  | 
 |    |  | 
 | <br>
  |  | 
 | ::<math>{{a}_{i,PH}}=-\beta \cdot {{a}_{i,GLL}}</math>
  |  | 
 |    |  | 
 | <br>
  |  | 
 | :where:
  |  | 
 | <br>
  |  | 
 | •	 <math>{{a}_{i,PH}}</math>  are the parameters of the PH model.
  |  | 
 |    |  | 
 | •	 <math>{{a}_{i,GLL}}</math>  are the parameters of the general log-linear model.
  |  | 
 |    |  | 
 | In this case, the likelihood functions given by Eqns. (PH LKV) and (GLL-LK) are identical. Therefore, if no transformation on the covariates is performed, the parameter values that maximize Eqn. (GLL-LK) also maximize the likelihood function for the proportional hazards-Weibull (PHW) model with parameters given by Eqn. (GLL Parameters). Note that for  <math>\beta </math>  = 1 (exponential life distribution), Eqns. (PH LKV) and (GLL-LK) are identical, and  <math>{{a}_{i,PH}}=-{{a}_{i,GLL}}.</math> 
  |  | 
 | <br>
  |  | 
 |    |  | 
 | |-
  |  | 
 | | align="center" valign="middle" | [http://reliawiki.com/index.php/Template:PH_Model PH Model]
  |  | 
 |    |  | 
 | |}
  |  | 
 |    |  | 
 | <br> 
  |  | 
 |    |  | 
 |    |  | 
 | [[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_PPH-Weibull&action=edit]]
  |  |