Template:Aaw stat prob sum: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
 
(8 intermediate revisions by one other user not shown)
Line 1: Line 1:
===Arrhenius-Weibull Statistical Properties Summary===
#REDIRECT [[Arrhenius_Relationship#Arrhenius-Weibull_Statistical_Properties_Summary]]
<br>
 
{{aaw mean}}
 
====Median====
 
<br>
The median, <math>\breve{T},</math> 
for the Arrhenius-Weibull model is given by:
 
<br>
::<math>\breve{T}=C\cdot {{e}^{\tfrac{B}{V}}}{{\left( \ln 2 \right)}^{\tfrac{1}{\beta }}}</math>
 
====Mode====
<br>
The mode,  <math>\tilde{T},</math> 
for the Arrhenius-Weibull model is given by:
 
<br>
::<math>\tilde{T}=C\cdot {{e}^{\tfrac{B}{V}}}{{\left( 1-\frac{1}{\beta } \right)}^{\tfrac{1}{\beta }}}</math>
 
====Standard Deviation====
<br>
The standard deviation,  <math>{{\sigma }_{T}},</math>  for the Arrhenius-Weibull model is given by:
 
<br>
::<math>{{\sigma }_{T}}=C\cdot {{e}^{\tfrac{B}{V}}}\cdot \sqrt{\Gamma \left( \frac{2}{\beta }+1 \right)-{{\left( \Gamma \left( \frac{1}{\beta }+1 \right) \right)}^{2}}}</math>
 
====Arrhenius-Weibull Reliability Function====
<br>
The Arrhenius-Weibull reliability function is given by:
 
<br>
::<math>R(T,V)={{e}^{-{{\left( \tfrac{T}{C\cdot {{e}^{\tfrac{B}{V}}}} \right)}^{\beta }}}}</math>
 
<br>
If the parameter  <math>B</math>  is positive, then the reliability increases as stress decreases.
<br>
[[Image:ALTA6.7.gif|thumb|center|300px|Behavior of the reliability function at different stress and constant parameter values.]]
<br>
 
<br>
The behavior of the reliability function of the Weibull distribution for different values of  <math>\beta </math>  was illustrated in Chapter 5. In the case of the Arrhenius-Weibull model, however, the reliability is a function of stress also. A 3D plot such as the ones shown in Fig. 8 is now needed to illustrate the effects of both the stress and  <math>\beta .</math>
 
<br>
::<math></math>
 
<br>
[[Image:ALTA6.8.gif|thumb|center|300px|Reliability function for <math>\Beta<1 </math>, <math>\Beta=1 </math>, and <math>\Beta>1 </math>.]]
 
<br>
====Conditional Reliability Function====
<br>
The Arrhenius-Weibull conditional reliability function at a specified stress level is given by:
 
 
<br>
::<math>R(T,t,V)=\frac{R(T+t,V)}{R(T,V)}=\frac{{{e}^{-{{\left( \tfrac{T+t}{\eta } \right)}^{\beta }}}}}{{{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}}</math>
 
<br>
or:
 
<br>
::<math>R(T,t,V)={{e}^{-\left[ {{\left( \tfrac{T+t}{C\cdot {{e}^{\tfrac{B}{V}}}} \right)}^{\beta }}-{{\left( \tfrac{T}{C\cdot {{e}^{\tfrac{B}{V}}}} \right)}^{\beta }} \right]}}</math>
 
<br>
====Reliable Life====
<br>
 
For the Arrhenius-Weibull relationship, the reliable life,  <math>{{t}_{R}}</math> , of a unit for a specified reliability and starting the mission at age zero is given by:
 
<br>
::<math>{{t}_{R}}=C\cdot {{e}^{\tfrac{B}{V}}}{{\left\{ -\ln \left[ R\left( {{t}_{R}},V \right) \right] \right\}}^{\tfrac{1}{\beta }}}</math>
 
<br>
This is the life for which the unit will function successfully with a reliability of  <math>R({{t}_{R}})</math> . If  <math>R({{t}_{R}})=0.50</math>  then  <math>{\breve{T}</math>,
the median life, or the life by which half of the units will survive.
<br>
<br>
 
====Arrhenius-Weibull Failure Rate Function====
<br>
The Arrhenius-Weibull failure rate function,  <math>\lambda (T)</math> , is given by:
 
<br>
::<math>\lambda \left( T,V \right)=\frac{f\left( T,V \right)}{R\left( T,V \right)}=\frac{\beta }{C\cdot {{e}^{\tfrac{B}{V}}}}{{\left( \frac{T}{C\cdot {{e}^{\tfrac{B}{V}}}} \right)}^{\beta -1}}</math>
<br>
[[Image:ALTA6.9.gif|thumb|center|300px|Failure rate function for <math>\Beta<1 </math>, <math>\Beta=1 </math>, and <math>\Beta>1 </math>.]]
<br>

Latest revision as of 04:38, 16 August 2012