|
|
Line 1: |
Line 1: |
| ===GLL Weibull===
| | #REDIRECT [[Multivariable_Relationships:_General_Log-Linear_and_Proportional_Hazards]] |
| The GLL-Weibull model can be derived by setting <math>\eta =L(\underline{X})</math> in Weibull <math>pdf</math>, yielding the following GLL-Weibull <math>pdf</math> :
| |
| | |
| <br>
| |
| <math>f(t,\underline{X})=\beta \cdot {{t}^{\beta -1}}{{e}^{-\beta \left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)}}{{e}^{-{{t}^{\beta }}{{e}^{-\beta \left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)}}}}</math>
| |
| | |
| <br>
| |
| The total number of unknowns to solve for in this model is <math>n+2</math> (i.e. <math>\beta ,{{a}_{0}},{{a}_{1}},...{{a}_{n}}).</math>
| |
| <br>
| |