|
|
| Line 1: |
Line 1: |
| ===Bounds on Time Given Instantaneous MTBF===
| | #REDIRECT [[Crow-AMSAA_-_NHPP#Bounds_on_Time_Given_Instantaneous_MTBF]] |
| ====Fisher Matrix Bounds====
| |
| The time, <math>T</math> , must be positive, thus <math>\ln T</math> is treated as being normally distributed.
| |
| | |
| ::<math>\frac{\ln \hat{T}-\ln T}{\sqrt{Var(\ln \hat{T}})}\ \tilde{\ }\ N(0,1)</math>
| |
| | |
| <br>
| |
| Confidence bounds on the time are given by:
| |
| | |
| ::<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}</math>
| |
| | |
| <br>
| |
| :where:
| |
| | |
| ::<math>\begin{align}
| |
| & Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\
| |
| & & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\,\,\,\hat{\lambda })
| |
| \end{align}</math>
| |
| | |
| <br>
| |
| The variance calculation is the same as Eqn. (variance1) and:
| |
| | |
| ::<math>\hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}</math>
| |
| | |
| ::<math>\begin{align}
| |
| & \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot MTB{{F}_{i}} \right)}^{1/(1-\beta )}}\left[ \frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot MTB{{F}_{i}})+\frac{1}{\beta (1-\beta )} \right] \\
| |
| & \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}}{\lambda (1-\beta )}
| |
| \end{align}</math>
| |
| | |
| ====Crow Bounds====
| |
| :Step 1: Calculate the confidence bounds on the instantaneous MTBF as presented in Section 5.5.2.
| |
| :Step 2: Calculate the bounds on time as follows.
| |
| | |
| ====Failure Terminated Data====
| |
| | |
| ::<math>\hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{c})}^{1/(1-\beta )}}</math>
| |
| | |
| So the lower an upper bounds on time are:
| |
| | |
| ::<math>{{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{1}}})}^{1/(1-\beta )}}</math>
| |
| | |
| ::<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{2}}})}^{1/(1-\beta )}}</math>
| |
| | |
| '''Time Terminated Data'''
| |
| | |
| ::<math>\hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{\Pi })}^{1/(1-\beta )}}</math>
| |
| <br>
| |
| So the lower and upper bounds on time are:
| |
| | |
| ::<math>{{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{1}}})}^{1/(1-\beta )}}</math>
| |
| | |
| ::<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}</math>
| |