|
|
| Line 1: |
Line 1: |
| ====Bounds on Cumulative Failure Intensity====
| | #REDIRECT [[RGA_Models_for_Repairable_Systems_Analysis#Bounds_on_Cumulative_Failure_Intensity]] |
| =====Fisher Matrix Bounds=====
| |
| The cumulative failure intensity, <math>{{\lambda }_{c}}(t)</math> must be positive, thus <math>\ln {{\lambda }_{c}}(t)</math> is approximately treated as being normally distributed.
| |
| | |
| ::<math>\frac{\ln ({{\widehat{\lambda }}_{c}}(t))-\ln ({{\lambda }_{c}}(t))}{\sqrt{Var\left[ \ln ({{\widehat{\lambda }}_{c}}(t)) \right]}}\ \tilde{\ }\ N(0,1)</math>
| |
| | |
| The approximate confidence bounds on the cumulative failure intensity are then estimated using:
| |
| | |
| ::<math>CB={{\widehat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\widehat{\lambda }}_{c}}(t))}/{{\widehat{\lambda }}_{c}}(t)}}</math>
| |
| | |
| :where:
| |
| | |
| ::<math>{{\widehat{\lambda }}_{c}}(t)=\widehat{\lambda }{{t}^{\widehat{\beta }-1}}</math>
| |
| | |
| :and:
| |
| | |
| ::<math>\begin{align}
| |
| & Var({{\widehat{\lambda }}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\widehat{\lambda }) \\
| |
| & & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\widehat{\beta },\widehat{\lambda })
| |
| \end{align}</math>
| |
| | |
| | |
| The variance calculation is the same as Eqns. (var1), (var2) and (var3):
| |
| | |
| ::<math>\begin{align}
| |
| & \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \widehat{\lambda }{{t}^{\widehat{\beta }-1}}\ln (t) \\
| |
| & \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\widehat{\beta }-1}}
| |
| \end{align}</math>
| |
| | |
| <br>
| |
| =====Crow Bounds=====
| |
| The Crow cumulative failure intensity confidence bounds are given by:
| |
| | |
| ::<math>C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}</math>
| |
| | |
| | |
| ::<math>C{{(t)}_{u}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}</math>
| |