|
|
Line 1: |
Line 1: |
| ====Bounds on Reliability====
| | #REDIRECT [[RGA_Models_for_Repairable_Systems_Analysis#Bounds_on_Reliability]] |
| =====Fisher Matrix Bounds=====
| |
| These bounds are based on:
| |
| | |
| ::<math>\log it(\widehat{R}(t))\sim N(0,1)</math>
| |
| | |
| | |
| ::<math>\log it(\widehat{R}(t))=\ln \left\{ \frac{\widehat{R}(t)}{1-\widehat{R}(t)} \right\}</math>
| |
| | |
| | |
| The confidence bounds on reliability are given by:
| |
| | |
| ::<math>CB=\frac{\widehat{R}(t)}{\widehat{R}(t)+(1-\widehat{R}(t)){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\widehat{R}(t))}/\left[ \widehat{R}(t)(1-\widehat{R}(t)) \right]}}}</math>
| |
| | |
| | |
| ::<math>Var(\widehat{R}(t))={{\left( \frac{\partial R}{\partial \beta } \right)}^{2}}Var(\widehat{\beta })+{{\left( \frac{\partial R}{\partial \lambda } \right)}^{2}}Var(\widehat{\lambda })+2\left( \frac{\partial R}{\partial \beta } \right)\left( \frac{\partial R}{\partial \lambda } \right)cov(\widehat{\beta },\widehat{\lambda })</math>
| |
| | |
| | |
| The variance calculation is the same as Eqns. (var1), (var2) and (var3).
| |
| | |
| ::<math>\begin{align}
| |
| & \frac{\partial R}{\partial \beta }= & {{e}^{-[\widehat{\lambda }{{(t+d)}^{\widehat{\beta }}}-\widehat{\lambda }{{t}^{\widehat{\beta }}}]}}[\lambda {{t}^{\widehat{\beta }}}\ln (t)-\lambda {{(t+d)}^{\widehat{\beta }}}\ln (t+d)] \\
| |
| & \frac{\partial R}{\partial \lambda }= & {{e}^{-[\widehat{\lambda }{{(t+d)}^{\widehat{\beta }}}-\widehat{\lambda }{{t}^{\widehat{\beta }}}]}}[{{t}^{\widehat{\beta }}}-{{(t+d)}^{\widehat{\beta }}}]
| |
| \end{align}</math>
| |
| | |
| | |
| =====Crow Bounds=====
| |
| ''Failure Terminated Data''
| |
| <br>
| |
| With failure terminated data, the 100( <math>1-\alpha </math> )% confidence interval for the current reliability at time <math>t</math> in a specified mission time <math>d</math> is:
| |
| | |
| ::<math>({{[\widehat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})</math>
| |
| | |
| :where
| |
| | |
| ::<math>\widehat{R}(\tau )={{e}^{-[\widehat{\lambda }{{(t+\tau )}^{\widehat{\beta }}}-\widehat{\lambda }{{t}^{\widehat{\beta }}}]}}</math>
| |
| | |
| <math>{{p}_{1}}</math> and <math>{{p}_{2}}</math> can be obtained from Eqn. (ft).
| |
| <br>
| |
| <br>
| |
| ''Time Terminated Data''
| |
| <br>
| |
| With time terminated data, the 100( <math>1-\alpha </math> )% confidence interval for the current reliability at time <math>t</math> in a specified mission time <math>\tau </math> is:
| |
| | |
| ::<math>({{[\widehat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})</math>
| |
| | |
| :where:
| |
| | |
| ::<math>\widehat{R}(d)={{e}^{-[\widehat{\lambda }{{(t+d)}^{\widehat{\beta }}}-\widehat{\lambda }{{t}^{\widehat{\beta }}}]}}</math>
| |
| | |
| <math>{{p}_{1}}</math> and <math>{{p}_{2}}</math> can be obtained from Eqn. (tt).
| |