Template:Lambda-beta parameter relationship: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====Lambda - Beta Parameter Relationship==== <br> Under the Crow-AMSAA (NHPP) model, the time to first failure is a Weibull random variable. The MTTF of a Weibull distributed ran…')
 
 
Line 1: Line 1:
====Lambda - Beta Parameter Relationship====
#REDIRECT [[Reliability_Growth_Planning#Lambda_-_Beta_Parameter_Relationship]]
<br>
Under the Crow-AMSAA (NHPP) model, the time to first failure is a Weibull random variable. The MTTF of a Weibull distributed random variable with parameters  <math>\beta </math>  and  <math>\eta </math>  is:
 
 
::<math>MTTF=\eta \cdot \Gamma \left( 1+\frac{1}{\beta } \right)</math>
 
 
The parameter lambda is defined as:
 
 
::<math>\lambda =\frac{1}{{{\eta }^{\beta }}}</math>
 
 
Using Eqn. (lambda eta relationship), the MTTF relationship shown in Eqn. (Weibull MTTF) becomes:
 
 
::<math>MTB{{F}_{B}}=\frac{\Gamma \left( 1+\tfrac{1}{\beta } \right)}{{{\lambda }^{\left( \tfrac{1}{\beta } \right)}}}</math>
 
 
Or, in terms of failure intensity:
 
 
::<math>{{\lambda }_{B}}=\frac{{{\lambda }^{\left( \tfrac{1}{\beta } \right)}}}{\Gamma \left( 1+\tfrac{1}{\beta } \right)}</math>

Latest revision as of 01:48, 27 August 2012