Confidence Bounds for Repairable Systems Analysis: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
mNo edit summary
Line 2: Line 2:
In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for [[Repairable Systems Analysis|Repairable Systems Analysis]]. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow. 
In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for [[Repairable Systems Analysis|Repairable Systems Analysis]]. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow. 


====Bounds on Beta====<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS  
===Bounds on Beta===<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS  
PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is approximately treated as being normally distributed.
The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is approximately treated as being normally distributed.


Line 25: Line 25:
::<math>\frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}=-\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{{{\beta }^{2}}}-\lambda \underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ T_{q}^{\beta }{{(\ln ({{T}_{q}}))}^{2}}-S_{q}^{\beta }{{(\ln ({{S}_{q}}))}^{2}} \right]\,\!</math>
::<math>\frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}=-\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{{{\beta }^{2}}}-\lambda \underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ T_{q}^{\beta }{{(\ln ({{T}_{q}}))}^{2}}-S_{q}^{\beta }{{(\ln ({{S}_{q}}))}^{2}} \right]\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
Calculate the conditional maximum likelihood estimate of <math>\tilde{\beta \,\!}\,\!</math> :
Calculate the conditional maximum likelihood estimate of <math>\tilde{\beta \,\!}\,\!</math> :


Line 37: Line 37:
\end{align}\,\!</math>
\end{align}\,\!</math>


====Bounds on Lambda====
===Bounds on Lambda====
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The parameter <math>\lambda \,\!</math> must be positive, thus <math>\ln \lambda \,\!</math> is approximately treated as being normally distributed. These bounds are based on:
The parameter <math>\lambda \,\!</math> must be positive, thus <math>\ln \lambda \,\!</math> is approximately treated as being normally distributed. These bounds are based on:


Line 51: Line 51:
The variance calculation is the same the equations given in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section.
The variance calculation is the same the equations given in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section.


=====Crow Bounds=====
====Crow Bounds====
'''Time Terminated'''
'''Time Terminated'''


Line 70: Line 70:
\end{align}\,\!</math>
\end{align}\,\!</math>


====Bounds on Growth Rate====
===Bounds on Growth Rate===
Since the growth rate is equal to <math>1-\beta \,\!</math>. the confidence bounds are:
Since the growth rate is equal to <math>1-\beta \,\!</math>. the confidence bounds are:


Line 80: Line 80:
<math>{{\beta }_{L}}\,\!</math> and <math>{{\beta }_{U}}\,\!</math> are obtained using the methods described above in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section.
<math>{{\beta }_{L}}\,\!</math> and <math>{{\beta }_{U}}\,\!</math> are obtained using the methods described above in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Beta|Bounds on Beta]] section.


====Bounds on Cumulative MTBF====
===Bounds on Cumulative MTBF===
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is approximately treated as being normally distributed.  
The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is approximately treated as being normally distributed.  


Line 106: Line 106:
\end{align}\,\!</math>
\end{align}\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
To calculate the Crow confidence bounds on cumulative MTBF, first calculate the Crow cumulative failure intensity confidence bounds:
To calculate the Crow confidence bounds on cumulative MTBF, first calculate the Crow cumulative failure intensity confidence bounds:


Line 120: Line 120:
\end{align}\,\!</math>
\end{align}\,\!</math>


====Bounds on Instantaneous MTBF====<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS  
===Bounds on Instantaneous MTBF===<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS  
PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is approximately treated as being normally distributed.  
The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is approximately treated as being normally distributed.  


Line 147: Line 147:
\end{align}\,\!</math>
\end{align}\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
'''Failure Terminated Data'''
'''Failure Terminated Data'''


Line 194: Line 194:
where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>.
where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>.


====Bounds on Cumulative Failure Intensity====
===Bounds on Cumulative Failure Intensity===
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math> must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is approximately treated as being normally distributed.  
The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math> must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is approximately treated as being normally distributed.  


Line 222: Line 222:
\end{align}\,\!</math>
\end{align}\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
The Crow cumulative failure intensity confidence bounds are given by:  
The Crow cumulative failure intensity confidence bounds are given by:  


Line 230: Line 230:
::<math>C{{(t)}_{u}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\!</math>
::<math>C{{(t)}_{u}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\!</math>


====Bounds on Instantaneous Failure Intensity====<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
===Bounds on Instantaneous Failure Intensity===<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). -->
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is approximately treated as being normally distributed.  
The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is approximately treated as being normally distributed.  


Line 254: Line 254:
\end{align}\,\!</math>
\end{align}\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
The Crow instantaneous failure intensity confidence bounds are given as:  
The Crow instantaneous failure intensity confidence bounds are given as:  


Line 262: Line 262:
\end{align}\,\!</math>
\end{align}\,\!</math>


====Bounds on Time Given Cumulative MTBF====
===Bounds on Time Given Cumulative MTBF===
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed.  
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed.  


Line 285: Line 285:
\end{align}\,\!</math>
\end{align}\,\!</math>


 
====Crow Bounds====
=====Crow Bounds=====
Step 1: Calculate:
Step 1: Calculate:


Line 304: Line 303:
<br>
<br>


====Bounds on Time Given Instantaneous MTBF====
===Bounds on Time Given Instantaneous MTBF===
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed.  
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed.  


Line 327: Line 326:
\end{align}\,\!</math>
\end{align}\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
Step 1: Calculate the confidence bounds on the instantaneous MTBF. <!-- as presented in Section 5.5.2.[Per Kate: THE SECTION 5.5.2 IS ABOUT THE CHI-SQUARED TEST FOR GROUPED DATA. NEED TO ASK SME TO VERIFY THE CORRECT SECTION TO LINK TO.]-->
Step 1: Calculate the confidence bounds on the instantaneous MTBF. <!-- as presented in Section 5.5.2.[Per Kate: THE SECTION 5.5.2 IS ABOUT THE CHI-SQUARED TEST FOR GROUPED DATA. NEED TO ASK SME TO VERIFY THE CORRECT SECTION TO LINK TO.]-->


Line 354: Line 353:
::<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\!</math>
::<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\!</math>


====Bounds on Time Given Cumulative Failure Intensity====
===Bounds on Time Given Cumulative Failure Intensity===
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed.  
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed.  


Line 378: Line 377:
\end{align}\,\!</math>
\end{align}\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
Step 1: Calculate:
Step 1: Calculate:


Line 394: Line 393:
\end{align}\,\!</math>
\end{align}\,\!</math>


====Bounds on Time Given Instantaneous Failure Intensity====
===Bounds on Time Given Instantaneous Failure Intensity===
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
These bounds are based on:  
These bounds are based on:  


Line 420: Line 419:
\end{align}\,\!</math>
\end{align}\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
Step 1: Calculate <math>{{\lambda }_{i}}(T)=\tfrac{1}{MTB{{F}_{i}}}\,\!</math>.
Step 1: Calculate <math>{{\lambda }_{i}}(T)=\tfrac{1}{MTB{{F}_{i}}}\,\!</math>.


Step 2: Use the equations in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Time_Given_Instantaneous_MTBF|Bounds on Time Given Instantaneous MTBF]] section to calculate the bounds on time given the instantaneous failure intensity.
Step 2: Use the equations in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Time_Given_Instantaneous_MTBF|Bounds on Time Given Instantaneous MTBF]] section to calculate the bounds on time given the instantaneous failure intensity.


====Bounds on Reliability====
===Bounds on Reliability===
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
These bounds are based on:  
These bounds are based on:  


::<math>\log it(\hat{R}(t))\sim N(0,1)\,\!</math>
::<math>\log it(\hat{R}(t))\sim N(0,1)\,\!</math>


::<math>\log it(\hat{R}(t))=\ln \left\{ \frac{\hat{R}(t)}{1-\hat{R}(t)} \right\}\,\!</math>
::<math>\log it(\hat{R}(t))=\ln \left\{ \frac{\hat{R}(t)}{1-\hat{R}(t)} \right\}\,\!</math>
Line 437: Line 435:


::<math>CB=\frac{\hat{R}(t)}{\hat{R}(t)+(1-\hat{R}(t)){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{R}(t))}/\left[ \hat{R}(t)(1-\hat{R}(t)) \right]}}}\,\!</math>
::<math>CB=\frac{\hat{R}(t)}{\hat{R}(t)+(1-\hat{R}(t)){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{R}(t))}/\left[ \hat{R}(t)(1-\hat{R}(t)) \right]}}}\,\!</math>


::<math>Var(\hat{R}(t))={{\left( \frac{\partial R}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial R}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial R}{\partial \beta } \right)\left( \frac{\partial R}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math>
::<math>Var(\hat{R}(t))={{\left( \frac{\partial R}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial R}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial R}{\partial \beta } \right)\left( \frac{\partial R}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math>
Line 448: Line 445:
\end{align}\,\!</math>
\end{align}\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
'''Failure Terminated Data'''
'''Failure Terminated Data'''


Line 473: Line 470:
<math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> can be obtained from the equation for time terminated data in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Instantaneous_MTBF|Bounds on Instantaneous MTBF]] section.
<math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> can be obtained from the equation for time terminated data in the [[Confidence_Bounds_for_Repairable_Systems_Analysis#Bounds_on_Instantaneous_MTBF|Bounds on Instantaneous MTBF]] section.


====Bounds on Time Given Reliability and Mission Time====
===Bounds on Time Given Reliability and Mission Time===
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The time, <math>t\,\!</math>. must be positive, thus <math>\ln t\,\!</math> is approximately treated as being normally distributed.  
The time, <math>t\,\!</math>. must be positive, thus <math>\ln t\,\!</math> is approximately treated as being normally distributed.  


Line 498: Line 495:
\end{align}\,\!</math>
\end{align}\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
'''Failure Terminated Data'''
'''Failure Terminated Data'''


Line 520: Line 517:
Step 4: If <math>{{t}_{1}}<{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{1}}\,\!</math> and <math>{{t}_{upper}}={{t}_{2}}\,\!</math>. If <math>{{t}_{1}}>{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{2}}\,\!</math> and <math>{{t}_{upper}}={{t}_{1}}\,\!</math>.
Step 4: If <math>{{t}_{1}}<{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{1}}\,\!</math> and <math>{{t}_{upper}}={{t}_{2}}\,\!</math>. If <math>{{t}_{1}}>{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{2}}\,\!</math> and <math>{{t}_{upper}}={{t}_{1}}\,\!</math>.


====Bounds on Mission Time Given Reliability and Time====
===Bounds on Mission Time Given Reliability and Time===
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The mission time, <math>d\,\!</math>. must be positive, thus <math>\ln \left( d \right)\,\!</math> is approximately treated as being normally distributed.  
The mission time, <math>d\,\!</math>. must be positive, thus <math>\ln \left( d \right)\,\!</math> is approximately treated as being normally distributed.  


Line 545: Line 542:
\end{align}\,\!</math>
\end{align}\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
'''Failure Terminated Data'''
'''Failure Terminated Data'''


Line 571: Line 568:
Step 4: If <math>{{d}_{1}}<{{d}_{2}}\,\!</math>. then <math>{{d}_{lower}}={{d}_{1}}\,\!</math> and <math>{{d}_{upper}}={{d}_{2}}\,\!</math>. If <math>{{d}_{1}}>{{d}_{2}}\,\!</math>. then <math>{{d}_{lower}}={{d}_{2}}\,\!</math> and <math>{{d}_{upper}}={{d}_{1}}\,\!</math>.
Step 4: If <math>{{d}_{1}}<{{d}_{2}}\,\!</math>. then <math>{{d}_{lower}}={{d}_{1}}\,\!</math> and <math>{{d}_{upper}}={{d}_{2}}\,\!</math>. If <math>{{d}_{1}}>{{d}_{2}}\,\!</math>. then <math>{{d}_{lower}}={{d}_{2}}\,\!</math> and <math>{{d}_{upper}}={{d}_{1}}\,\!</math>.


====Bounds on Cumulative Number of Failures====
===Bounds on Cumulative Number of Failures===
=====Fisher Matrix Bounds=====
====Fisher Matrix Bounds====
The cumulative number of failures, <math>N(t)\,\!</math>. must be positive, thus <math>\ln \left( N(t) \right)\,\!</math> is approximately treated as being normally distributed.  
The cumulative number of failures, <math>N(t)\,\!</math>. must be positive, thus <math>\ln \left( N(t) \right)\,\!</math> is approximately treated as being normally distributed.  


Line 596: Line 593:
\end{align}\,\!</math>
\end{align}\,\!</math>


=====Crow Bounds=====
====Crow Bounds====
::<math>\begin{array}{*{35}{l}}
::<math>\begin{array}{*{35}{l}}
   {{N}_{L}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{L}}  \\
   {{N}_{L}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{L}}  \\

Revision as of 22:51, 10 February 2014

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/reliability_growth_and_repairable_system_analysis


RGAbox.png

Appendix E  
Confidence Bounds for Repairable Systems Analysis  


In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for Repairable Systems Analysis. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow. 

Bounds on Beta

Fisher Matrix Bounds

The parameter [math]\displaystyle{ \beta \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \beta \,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln (\hat{\beta })-\ln (\beta )}{\sqrt{Var\left[ \ln (\hat{\beta }) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
[math]\displaystyle{ C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\! }[/math]
[math]\displaystyle{ \hat{\beta }=\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{\hat{\lambda }\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\left[ (T_{q}^{\hat{\beta }}\ln ({{T}_{q}})-S_{q}^{\hat{\beta }}\ln ({{S}_{q}}) \right]-\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\underset{i=1}{\overset{{{N}_{q}}}{\mathop{\sum }}}\,\ln ({{X}_{i}}{{}_{q}})}\,\! }[/math]

All variance can be calculated using the Fisher Information Matrix.

[math]\displaystyle{ \Lambda \,\! }[/math] is the natural log-likelihood function.

[math]\displaystyle{ \Lambda =\underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ {{N}_{q}}(\ln (\lambda )+\ln (\beta ))-\lambda (T_{q}^{\beta }-S_{q}^{\beta })+(\beta -1)\underset{i=1}{\overset{{{N}_{q}}}{\mathop \sum }}\,\ln ({{x}_{iq}}) \right]\,\! }[/math]
[math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}=-\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{{{\lambda }^{2}}}\,\! }[/math]
[math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }=-\underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ T_{q}^{\beta }\ln ({{T}_{q}})-S_{q}^{\beta }\ln ({{S}_{q}}) \right]\,\! }[/math]
[math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}=-\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{{{\beta }^{2}}}-\lambda \underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ T_{q}^{\beta }{{(\ln ({{T}_{q}}))}^{2}}-S_{q}^{\beta }{{(\ln ({{S}_{q}}))}^{2}} \right]\,\! }[/math]

Crow Bounds

Calculate the conditional maximum likelihood estimate of [math]\displaystyle{ \tilde{\beta \,\!}\,\! }[/math] :

[math]\displaystyle{ \tilde{\beta }=\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{M}_{q}}}{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\underset{i=1}{\overset{M}{\mathop{\sum }}}\,\ln \left( \tfrac{{{T}_{q}}}{{{X}_{iq}}} \right)}\,\! }[/math]

The Crow 2-sided [math]\displaystyle{ (1-a)\,\! }[/math] 100% confidence bounds on [math]\displaystyle{ \beta \,\! }[/math] are:

[math]\displaystyle{ \begin{align} {{\beta }_{L}}= & \tilde{\beta }\frac{\chi _{\tfrac{\alpha }{2},2M}^{2}}{2M} \\ {{\beta }_{U}}= & \tilde{\beta }\frac{\chi _{1-\tfrac{\alpha }{2},2M}^{2}}{2M} \end{align}\,\! }[/math]

Bounds on Lambda=

Fisher Matrix Bounds

The parameter [math]\displaystyle{ \lambda \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \lambda \,\! }[/math] is approximately treated as being normally distributed. These bounds are based on:

[math]\displaystyle{ \frac{\ln (\hat{\lambda })-\ln (\lambda )}{\sqrt{Var\left[ \ln (\hat{\lambda }) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are given as:

[math]\displaystyle{ C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\! }[/math]

where [math]\displaystyle{ \hat{\lambda }=\tfrac{n}{T_{K}^{{\hat{\beta }}}}\,\! }[/math].

The variance calculation is the same the equations given in the Bounds on Beta section.

Crow Bounds

Time Terminated

The confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] for time terminated data are calculated using:

[math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \\ {{\lambda }_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \end{align}\,\! }[/math]

Failure Terminated

The confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] for failure terminated data are calculated using:

[math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \\ {{\lambda }_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \end{align}\,\! }[/math]

Bounds on Growth Rate

Since the growth rate is equal to [math]\displaystyle{ 1-\beta \,\! }[/math]. the confidence bounds are:

[math]\displaystyle{ \begin{align} Gr.\text{ }Rat{{e}_{L}}= & 1-{{\beta }_{U}} \\ Gr.\text{ }Rat{{e}_{U}}= & 1-{{\beta }_{L}} \end{align}\,\! }[/math]

[math]\displaystyle{ {{\beta }_{L}}\,\! }[/math] and [math]\displaystyle{ {{\beta }_{U}}\,\! }[/math] are obtained using the methods described above in the Bounds on Beta section.

Bounds on Cumulative MTBF

Fisher Matrix Bounds

The cumulative MTBF, [math]\displaystyle{ {{m}_{c}}(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln {{m}_{c}}(t)\,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln ({{\hat{m}}_{c}}(t))-\ln ({{m}_{c}}(t))}{\sqrt{Var\left[ \ln ({{\hat{m}}_{c}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on the cumulative MTBF are then estimated from:

[math]\displaystyle{ CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{m}}_{c}}(t))}/{{\hat{m}}_{c}}(t)}}\,\! }[/math]
where:
[math]\displaystyle{ {{\hat{m}}_{c}}(t)=\frac{1}{\hat{\lambda }}{{t}^{1-\hat{\beta }}}\,\! }[/math]
[math]\displaystyle{ \begin{align} Var({{\hat{m}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\, \end{align}\,\! }[/math]

The variance calculation is the same as the calculations given in the Bounds on Beta section.

[math]\displaystyle{ \begin{align} \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }}{{t}^{1-\hat{\beta }}}\ln (t) \\ \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]

Crow Bounds

To calculate the Crow confidence bounds on cumulative MTBF, first calculate the Crow cumulative failure intensity confidence bounds:

[math]\displaystyle{ C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\! }[/math]
[math]\displaystyle{ C{{(t)}_{u}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\! }[/math]
Then
[math]\displaystyle{ \begin{align} {{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\ {{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}} \end{align}\,\! }[/math]

Bounds on Instantaneous MTBF

Fisher Matrix Bounds

The instantaneous MTBF, [math]\displaystyle{ {{m}_{i}}(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln {{m}_{i}}(t)\,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln ({{\hat{m}}_{i}}(t))-\ln ({{m}_{i}}(t))}{\sqrt{Var\left[ \ln ({{\hat{m}}_{i}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on the instantaneous MTBF are then estimated from:

[math]\displaystyle{ CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{m}}_{i}}(t))}/{{\hat{m}}_{i}}(t)}}\,\! }[/math]
where:
[math]\displaystyle{ {{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\! }[/math]
[math]\displaystyle{ \begin{align} Var({{\hat{m}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as the calculations given in the Bounds on Beta section.

[math]\displaystyle{ \begin{align} \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{\hat{\beta }}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln (t) \\ \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]

Crow Bounds

Failure Terminated Data

To calculate the bounds for failure terminated data, consider the following equation:

[math]\displaystyle{ G(\mu |n)=\mathop{}_{0}^{\infty }\frac{{{e}^{-x}}{{x}^{n-2}}}{(n-2)!}\underset{i=0}{\overset{n-1}{\mathop \sum }}\,\frac{1}{i!}{{\left( \frac{\mu }{x} \right)}^{i}}\exp (-\frac{\mu }{x})\,dx\,\! }[/math]

Find the values [math]\displaystyle{ {{p}_{1}}\,\! }[/math] and [math]\displaystyle{ {{p}_{2}}\,\! }[/math] by finding the solution [math]\displaystyle{ c\,\! }[/math] to [math]\displaystyle{ G({{n}^{2}}/c|n)=\xi \,\! }[/math] for [math]\displaystyle{ \xi =\tfrac{\alpha }{2}\,\! }[/math] and [math]\displaystyle{ \xi =1-\tfrac{\alpha }{2}\,\! }[/math]. respectively. If using the biased parameters, [math]\displaystyle{ \hat{\beta }\,\! }[/math] and [math]\displaystyle{ \hat{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:

[math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{p}_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{p}_{2}} \end{align}\,\! }[/math]

where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math]. If using the unbiased parameters, [math]\displaystyle{ \bar{\beta }\,\! }[/math] and [math]\displaystyle{ \bar{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:

[math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{2}} \end{align}\,\! }[/math]

where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math].

Time Terminated Data

To calculate the bounds for time terminated data, consider the following equation where [math]\displaystyle{ {{I}_{1}}(.)\,\! }[/math] is the modified Bessel function of order one:

[math]\displaystyle{ H(x|k)=\underset{j=1}{\overset{k}{\mathop \sum }}\,\frac{{{x}^{2j-1}}}{{{2}^{2j-1}}(j-1)!j!{{I}_{1}}(x)}\,\! }[/math]

Find the values [math]\displaystyle{ {{\Pi }_{1}}\,\! }[/math] and [math]\displaystyle{ {{\Pi }_{2}}\,\! }[/math] by finding the solution [math]\displaystyle{ x\,\! }[/math] to [math]\displaystyle{ H(x|k)=\tfrac{\alpha }{2}\,\! }[/math] and [math]\displaystyle{ H(x|k)=1-\tfrac{\alpha }{2}\,\! }[/math] in the cases corresponding to the lower and upper bounds, respectively.

Calculate [math]\displaystyle{ \Pi =\tfrac{{{n}^{2}}}{4{{x}^{2}}}\,\! }[/math] for each case. If using the biased parameters, [math]\displaystyle{ \hat{\beta }\,\! }[/math] and [math]\displaystyle{ \hat{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:

[math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{\Pi }_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{\Pi }_{2}} \end{align}\,\! }[/math]

where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math]. If using the unbiased parameters, [math]\displaystyle{ \bar{\beta }\,\! }[/math] and [math]\displaystyle{ \bar{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:

[math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{2}} \end{align}\,\! }[/math]

where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math].

Bounds on Cumulative Failure Intensity

Fisher Matrix Bounds

The cumulative failure intensity, [math]\displaystyle{ {{\lambda }_{c}}(t)\,\! }[/math] must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{c}}(t)\,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln ({{\hat{\lambda }}_{c}}(t))-\ln ({{\lambda }_{c}}(t))}{\sqrt{Var\left[ \ln ({{\hat{\lambda }}_{c}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The approximate confidence bounds on the cumulative failure intensity are then estimated using:

[math]\displaystyle{ CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{\lambda }}_{c}}(t))}/{{\hat{\lambda }}_{c}}(t)}}\,\! }[/math]
where:
[math]\displaystyle{ {{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\! }[/math]
and:
[math]\displaystyle{ \begin{align} Var({{\hat{\lambda }}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as the calculations in the Bounds on Beta section.

[math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln (t) \\ \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]

Crow Bounds

The Crow cumulative failure intensity confidence bounds are given by:

[math]\displaystyle{ C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\! }[/math]


[math]\displaystyle{ C{{(t)}_{u}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\! }[/math]

Bounds on Instantaneous Failure Intensity

Fisher Matrix Bounds

The instantaneous failure intensity, [math]\displaystyle{ {{\lambda }_{i}}(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{i}}(t)\,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln ({{\hat{\lambda }}_{i}}(t))-\ln ({{\lambda }_{i}}(t))}{\sqrt{Var\left[ \ln ({{\hat{\lambda }}_{i}}(t)) \right]}}\sim N(0,1)\,\! }[/math]

The approximate confidence bounds on the instantaneous failure intensity are then estimated from:

[math]\displaystyle{ CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{\lambda }}_{i}}(t))}/{{\hat{\lambda }}_{i}}(t)}}\,\! }[/math]

where [math]\displaystyle{ {{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\! }[/math] and:

[math]\displaystyle{ \begin{align} Var({{\hat{\lambda }}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as the calculations in the Bounds on Beta section.

[math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln (t) \\ \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]

Crow Bounds

The Crow instantaneous failure intensity confidence bounds are given as:

[math]\displaystyle{ \begin{align} {{[{{\lambda }_{i}}(t)]}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\ {{[{{\lambda }_{i}}(t)]}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}} \end{align}\,\! }[/math]

Bounds on Time Given Cumulative MTBF

Fisher Matrix Bounds

The time, [math]\displaystyle{ T\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
[math]\displaystyle{ Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]

The variance calculation is the same as the calculations in the Bounds on Beta section.

[math]\displaystyle{ \hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\! }[/math]
[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot {{m}_{c}})}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate:

[math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\! }[/math]

Step 2: Estimate the number of failures:

[math]\displaystyle{ N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\! }[/math]

Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for [math]\displaystyle{ {{t}_{l}}\,\! }[/math] and [math]\displaystyle{ {{t}_{u}}\,\! }[/math] in the following equations:

[math]\displaystyle{ \begin{align} & {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ & {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} \end{align}\,\! }[/math]


Bounds on Time Given Instantaneous MTBF

Fisher Matrix Bounds

The time, [math]\displaystyle{ T\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
[math]\displaystyle{ Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]

The variance calculation is the same as the calculations in the Bounds on Beta section.

[math]\displaystyle{ \hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}\,\! }[/math]
[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot MTB{{F}_{i}} \right)}^{1/(1-\beta )}}[\frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot MTB{{F}_{i}})+\frac{1}{\beta (1-\beta )}] \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate the confidence bounds on the instantaneous MTBF.

Step 2: Calculate the bounds on time as follows.

Failure Terminated Data

[math]\displaystyle{ \hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{c})}^{1/(1-\beta )}}\,\! }[/math]

So the lower an upper bounds on time are:

[math]\displaystyle{ {{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{1}}})}^{1/(1-\beta )}}\,\! }[/math]


[math]\displaystyle{ {{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{2}}})}^{1/(1-\beta )}}\,\! }[/math]

Time Terminated Data

[math]\displaystyle{ \hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{\Pi })}^{1/(1-\beta )}}\,\! }[/math]

So the lower and upper bounds on time are:

[math]\displaystyle{ {{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{1}}})}^{1/(1-\beta )}}\,\! }[/math]


[math]\displaystyle{ {{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\! }[/math]

Bounds on Time Given Cumulative Failure Intensity

Fisher Matrix Bounds

The time, [math]\displaystyle{ T\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln \hat{T} \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]

The confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
[math]\displaystyle{ Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]

The variance calculation is the same as the calculations given in the Bounds on Beta section.

[math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\,\! }[/math]


[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate:

[math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\! }[/math]

Step 2: Estimate the number of failures:

[math]\displaystyle{ N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\! }[/math]

Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for [math]\displaystyle{ {{t}_{l}}\,\! }[/math] and [math]\displaystyle{ {{t}_{u}}\,\! }[/math] in the following equations:

[math]\displaystyle{ \begin{align} {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} \end{align}\,\! }[/math]

Bounds on Time Given Instantaneous Failure Intensity

Fisher Matrix Bounds

These bounds are based on:

[math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\sim N(0,1)\,\! }[/math]

The confidence bounds on the time are given by:

[math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
[math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as the calculations given in the Bounds on Beta section.

[math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}\,\! }[/math]
[math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}[-\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )}] \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]

Crow Bounds

Step 1: Calculate [math]\displaystyle{ {{\lambda }_{i}}(T)=\tfrac{1}{MTB{{F}_{i}}}\,\! }[/math].

Step 2: Use the equations in the Bounds on Time Given Instantaneous MTBF section to calculate the bounds on time given the instantaneous failure intensity.

Bounds on Reliability

Fisher Matrix Bounds

These bounds are based on:

[math]\displaystyle{ \log it(\hat{R}(t))\sim N(0,1)\,\! }[/math]
[math]\displaystyle{ \log it(\hat{R}(t))=\ln \left\{ \frac{\hat{R}(t)}{1-\hat{R}(t)} \right\}\,\! }[/math]

The confidence bounds on reliability are given by:

[math]\displaystyle{ CB=\frac{\hat{R}(t)}{\hat{R}(t)+(1-\hat{R}(t)){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{R}(t))}/\left[ \hat{R}(t)(1-\hat{R}(t)) \right]}}}\,\! }[/math]
[math]\displaystyle{ Var(\hat{R}(t))={{\left( \frac{\partial R}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial R}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial R}{\partial \beta } \right)\left( \frac{\partial R}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]

The variance calculation is the same as the calculations in the Bounds on Beta section.

[math]\displaystyle{ \begin{align} \frac{\partial R}{\partial \beta }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[\lambda {{t}^{\hat{\beta }}}\ln (t)-\lambda {{(t+d)}^{\hat{\beta }}}\ln (t+d)] \\ \frac{\partial R}{\partial \lambda }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[{{t}^{\hat{\beta }}}-{{(t+d)}^{\hat{\beta }}}] \end{align}\,\! }[/math]

Crow Bounds

Failure Terminated Data

With failure terminated data, the 100( [math]\displaystyle{ 1-\alpha \,\! }[/math] )% confidence interval for the current reliability at time [math]\displaystyle{ t\,\! }[/math] in a specified mission time [math]\displaystyle{ d\,\! }[/math] is:

[math]\displaystyle{ ({{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math]
where
[math]\displaystyle{ \hat{R}(\tau )={{e}^{-[\hat{\lambda }{{(t+\tau )}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}\,\! }[/math]

[math]\displaystyle{ {{p}_{1}}\,\! }[/math] and [math]\displaystyle{ {{p}_{2}}\,\! }[/math] can be obtained from the equation for failure terminated data in the Bounds on Instantaneous MTBF section.

Time Terminated Data

With time terminated data, the 100( [math]\displaystyle{ 1-\alpha \,\! }[/math] )% confidence interval for the current reliability at time [math]\displaystyle{ t\,\! }[/math] in a specified mission time [math]\displaystyle{ \tau \,\! }[/math] is:

[math]\displaystyle{ ({{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math]
where:
[math]\displaystyle{ \hat{R}(d)={{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}\,\! }[/math]

[math]\displaystyle{ {{p}_{1}}\,\! }[/math] and [math]\displaystyle{ {{p}_{2}}\,\! }[/math] can be obtained from the equation for time terminated data in the Bounds on Instantaneous MTBF section.

Bounds on Time Given Reliability and Mission Time

Fisher Matrix Bounds

The time, [math]\displaystyle{ t\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln t\,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln (\hat{t})-\ln (t)}{\sqrt{Var\left[ \ln (\hat{t}) \right]}}\sim N(0,1)\,\! }[/math]

The confidence bounds on time are calculated by using:

[math]\displaystyle{ CB=\hat{t}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{t})}/\hat{t}}}\,\! }[/math]
where:
[math]\displaystyle{ Var(\hat{t})={{\left( \frac{\partial t}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial t}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial t}{\partial \beta } \right)\left( \frac{\partial t}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]

[math]\displaystyle{ \hat{t}\,\! }[/math] is calculated numerically from:

[math]\displaystyle{ \hat{R}(d)={{e}^{-[\hat{\lambda }{{(\hat{t}+d)}^{\hat{\beta }}}-\hat{\lambda }{{{\hat{t}}}^{\hat{\beta }}}]}}\text{ };\text{ }d\text{ = mission time}\,\! }[/math]

The variance calculations are done by:

[math]\displaystyle{ \begin{align} \frac{\partial t}{\partial \beta }= & \frac{{{{\hat{t}}}^{{\hat{\beta }}}}\ln (\hat{t})-{{(\hat{t}+d)}^{{\hat{\beta }}}}\ln (\hat{t}+d)}{\hat{\beta }{{(\hat{t}+d)}^{\hat{\beta }-1}}-\hat{\beta }{{{\hat{t}}}^{\hat{\beta }-1}}} \\ \frac{\partial t}{\partial \lambda }= & \frac{{{{\hat{t}}}^{{\hat{\beta }}}}-{{(\hat{t}+d)}^{{\hat{\beta }}}}}{\hat{\lambda }\hat{\beta }{{(\hat{t}+d)}^{\hat{\beta }-1}}-\hat{\lambda }\hat{\beta }{{{\hat{t}}}^{\hat{\beta }-1}}} \end{align}\,\! }[/math]

Crow Bounds

Failure Terminated Data

Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{p}_{1}}}}},{{R}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math].

Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{1}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{1}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{1}^{\hat{\beta }}]}}\,\! }[/math].

Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{2}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{2}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{2}^{\hat{\beta }}]}}\,\! }[/math].

Step 4: If [math]\displaystyle{ {{t}_{1}}\lt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{1}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{t}_{1}}\gt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{2}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{1}}\,\! }[/math].


Time Terminated Data
Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{\Pi }_{1}}}}},{{R}^{\tfrac{1}{{{\Pi }_{2}}}}})\,\! }[/math].

Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{1}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{1}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{1}^{\hat{\beta }}]}}\,\! }[/math].

Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{2}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{2}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{2}^{\hat{\beta }}]}}\,\! }[/math].

Step 4: If [math]\displaystyle{ {{t}_{1}}\lt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{1}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{t}_{1}}\gt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{2}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{1}}\,\! }[/math].

Bounds on Mission Time Given Reliability and Time

Fisher Matrix Bounds

The mission time, [math]\displaystyle{ d\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln \left( d \right)\,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln (\hat{d})-\ln (d)}{\sqrt{Var\left[ \ln (\hat{d}) \right]}}\sim N(0,1)\,\! }[/math]

The confidence bounds on mission time are given by using:

[math]\displaystyle{ CB=\hat{d}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{d})}/\hat{d}}}\,\! }[/math]
where:
[math]\displaystyle{ Var(\hat{d})={{\left( \frac{\partial d}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial d}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial td}{\partial \beta } \right)\left( \frac{\partial d}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]

Calculate [math]\displaystyle{ \hat{d}\,\! }[/math] from:

[math]\displaystyle{ \hat{d}={{\left[ {{t}^{{\hat{\beta }}}}-\frac{\ln (R)}{{\hat{\lambda }}} \right]}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\! }[/math]

The variance calculations are done by:

[math]\displaystyle{ \begin{align} \frac{\partial d}{\partial \beta }= & \left[ \frac{{{t}^{{\hat{\beta }}}}\ln (t)}{{{(t+\hat{d})}^{{\hat{\beta }}}}}-\ln (t+\hat{d}) \right]\cdot \frac{t+\hat{d}}{{\hat{\beta }}} \\ \frac{\partial d}{\partial \lambda }= & \frac{{{t}^{{\hat{\beta }}}}-{{(t+\hat{d})}^{{\hat{\beta }}}}}{\hat{\lambda }\hat{\beta }{{(t+\hat{d})}^{\hat{\beta }-1}}} \end{align}\,\! }[/math]

Crow Bounds

Failure Terminated Data

Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{p}_{1}}}}},{{R}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math].

Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{1}}\,\! }[/math] such that:

[math]\displaystyle{ {{d}_{1}}={{\left( {{t}^{{\hat{\beta }}}}-\frac{\ln ({{R}_{lower}})}{{\hat{\lambda }}} \right)}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\! }[/math]

Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{2}}\,\! }[/math] such that:

[math]\displaystyle{ {{d}_{2}}={{\left( {{t}^{{\hat{\beta }}}}-\frac{\ln ({{R}_{upper}})}{{\hat{\lambda }}} \right)}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\! }[/math]

Step 4: If [math]\displaystyle{ {{d}_{1}}\lt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{1}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{d}_{1}}\gt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{2}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{1}}\,\! }[/math].


Time Terminated Data

Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{\Pi }_{1}}}}},{{R}^{\tfrac{1}{{{\Pi }_{2}}}}})\,\! }[/math].

Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{1}}\,\! }[/math] using the same equation given for the failure terminated data.

Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{2}}\,\! }[/math] using the same equation given for the failure terminated data.

Step 4: If [math]\displaystyle{ {{d}_{1}}\lt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{1}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{d}_{1}}\gt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{2}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{1}}\,\! }[/math].

Bounds on Cumulative Number of Failures

Fisher Matrix Bounds

The cumulative number of failures, [math]\displaystyle{ N(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln \left( N(t) \right)\,\! }[/math] is approximately treated as being normally distributed.

[math]\displaystyle{ \frac{\ln (\hat{N}(t))-\ln (N(t))}{\sqrt{Var\left[ \ln \hat{N}(t) \right]}}\sim N(0,1)\,\! }[/math]


[math]\displaystyle{ N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\! }[/math]
where:
[math]\displaystyle{ \hat{N}(t)=\hat{\lambda }{{t}^{\hat{\beta }}}\,\! }[/math]
[math]\displaystyle{ \begin{align} Var(\hat{N}(t))= & {{\left( \frac{\partial N(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial N(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial N(t)}{\partial \beta } \right)\left( \frac{\partial N(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]

The variance calculation is the same as the calculations in the Bounds on Beta section.

[math]\displaystyle{ \begin{align} \frac{\partial N(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }}}\ln (t) \\ \frac{\partial N(t)}{\partial \lambda }= & t\hat{\beta } \end{align}\,\! }[/math]

Crow Bounds

[math]\displaystyle{ \begin{array}{*{35}{l}} {{N}_{L}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{L}} \\ {{N}_{U}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{U}} \\ \end{array}\,\! }[/math]

where [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{L}}\,\! }[/math] and [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{U}}\,\! }[/math] can be obtained using the equation given in the Bounds on Instantaneous Failure Intensity section.