Cumulative Damage Arrhenius

From ReliaWiki
Revision as of 22:02, 20 April 2023 by Lisa Hacker (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/accelerated_life_testing_data_analysis

Chapter 10.2: Cumulative Damage Arrhenius


ALTAbox.png

Chapter 10.2  
Cumulative Damage Arrhenius  

Synthesis-icon.png

Available Software:
ALTA

Examples icon.png

More Resources:
ALTA Examples

Cumulative Damage Arrhenius Relationship

This section presents a generalized formulation of the cumulative damage model where stress can be any function of time and the life-stress relationship is based on the Arrhenius life-stress relationship. Given a time-varying stress [math]\displaystyle{ x(t)\,\! }[/math] and assuming the Arrhenius relationship, the life-stress relationship is given by:

[math]\displaystyle{ L(x(t))=C{{e}^{\tfrac{b}{x(t)}}}\,\! }[/math]

In ALTA, the above relationship is actually presented in a format consistent with the general log-linear (GLL) relationship for the Arrhenius relationship:

[math]\displaystyle{ L(x(t))={{e}^{{{\alpha }_{0}}+{{\alpha }_{1}}\tfrac{1}{x(t)}}}\,\! }[/math]

Therefore, instead of displaying [math]\displaystyle{ C\,\! }[/math] and [math]\displaystyle{ b\,\! }[/math] as the calculated parameters, the following reparameterization is used:

[math]\displaystyle{ \begin{align} {{\alpha }_{0}}=\ & \ln (C) \\ {{\alpha }_{1}}=\ & b \end{align}\,\! }[/math]

Cumulative Damage Arrhenius - Exponential

Given a time-varying stress [math]\displaystyle{ x(t)\,\! }[/math] and assuming the Arrhenius relationship, the mean life is:

[math]\displaystyle{ \frac{1}{m(t,x)}=s(t,x)=\frac{{{e}^{\tfrac{-b}{x(t)}}}}{C}\,\! }[/math]

The reliability function of the unit under a single stress is given by:

[math]\displaystyle{ \begin{align} R(t,x(t))={{e}^{-I(t,x)}} \end{align}\,\! }[/math]

where:

[math]\displaystyle{ I(t,x)=\underset{0}{\mathop{\overset{t}{\mathop{\int_{}^{}}}\,}}\,\frac{{{e}^{\tfrac{-b}{x(u)}}}}{C}du\,\! }[/math]

Therefore, the pdf is:

[math]\displaystyle{ \begin{align} f(t,x)=s(t,x){{e}^{-I(t,x)}} \end{align}\,\! }[/math]

Parameter estimation can be accomplished via maximum likelihood estimation methods, and confidence intervals can be approximated using the Fisher matrix approach. Once the parameters are determined, all other characteristics of interest can be obtained utilizing the statistical properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-likelihood equation is as follows:

[math]\displaystyle{ \begin{align} & \ln (L)= & \Lambda =\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}\ln [s({{T}_{i}},{{x}_{i}})]-\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}\left( I({{T}_{i}},{{x}_{i}}) \right) -\overset{S}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime }\left( I(T_{i}^{\prime },x_{i}^{\prime }) \right)+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }] \end{align}\,\! }[/math]

where:

[math]\displaystyle{ \begin{align} & R_{Li}^{\prime \prime }(T_{Li}^{\prime \prime },x_{i}^{\prime \prime })= & {{e}^{-I(T_{Li}^{\prime \prime },x_{i}^{\prime \prime })}} \\ & R_{Ri}^{\prime \prime }(T_{Ri}^{\prime \prime },x_{i}^{\prime \prime })= & {{e}^{-I(T_{Ri}^{\prime \prime },x_{i}^{\prime \prime })}} \end{align}\,\! }[/math]

and:

  • [math]\displaystyle{ {{F}_{e}}\,\! }[/math] is the number of groups of exact time-to-failure data points.
  • [math]\displaystyle{ {{N}_{i}}\,\! }[/math] is the number of times-to-failure in the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] time-to-failure data group.
  • [math]\displaystyle{ {{T}_{i}}\,\! }[/math] is the exact failure time of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] group.
  • [math]\displaystyle{ S\,\! }[/math] is the number of groups of suspension data points.
  • [math]\displaystyle{ N_{i}^{\prime }\,\! }[/math] is the number of suspensions in the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] group of suspension data points.
  • [math]\displaystyle{ T_{i}^{\prime }\,\! }[/math] is the running time of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] suspension data group.
  • [math]\displaystyle{ FI\,\! }[/math] is the number of interval data groups.
  • [math]\displaystyle{ N_{i}^{\prime \prime }\,\! }[/math] is the number of intervals in the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] group of data intervals.
  • [math]\displaystyle{ T_{Li}^{\prime \prime }\,\! }[/math] is the beginning of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] interval.
  • [math]\displaystyle{ T_{Ri}^{\prime \prime }\,\! }[/math] is the ending of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] interval.

Cumulative Damage Arrhenius - Weibull

Given a time-varying stress [math]\displaystyle{ x(t)\,\! }[/math] and assuming the Arrhenius relationship, the characteristic life is given by:

[math]\displaystyle{ \frac{1}{\eta (t,x)}=s(t,x)=\frac{{{e}^{\tfrac{-b}{x(t)}}}}{C}\,\! }[/math]

The reliability function of the unit under a single stress is given by:

[math]\displaystyle{ R(t,x(t))={{e}^{-{{\left( I(t,x) \right)}^{\beta }}}}\,\! }[/math]

where:

[math]\displaystyle{ I(t,x)=\underset{0}{\mathop{\overset{t}{\mathop{\int{}^{}}}\,}}\,\frac{{{e}^{\tfrac{-b}{x(u)}}}}{C}du\,\! }[/math]

Therefore, the pdf is:

[math]\displaystyle{ f(t,x)=\beta s(t,x){{\left( I(t,x) \right)}^{\beta -1}}{{e}^{-{{\left( I(t,x) \right)}^{\beta }}}}\,\! }[/math]

Parameter estimation can be accomplished via maximum likelihood estimation methods, and confidence intervals can be approximated using the Fisher matrix approach. Once the parameters are determined, all other characteristics of interest can be obtained utilizing the statistical properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-likelihood equation is as follows:

[math]\displaystyle{ \begin{align} & \ln (L)= & \Lambda =\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}\ln [\beta s({{T}_{i}},{{x}_{i}}){{\left( I({{T}_{i}},{{x}_{i}}) \right)}^{\beta -1}}]-\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}{{\left( I({{T}_{i}},{{x}_{i}}) \right)}^{\beta }} -\overset{S}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime }{{\left( I(T_{i}^{\prime },x_{i}^{\prime }) \right)}^{\beta }}+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }] \end{align}\,\! }[/math]

where:

[math]\displaystyle{ \begin{align} & R_{Li}^{\prime \prime }(T_{Li}^{\prime \prime },x_{i}^{\prime \prime })= & {{e}^{-{{\left( I(T_{Li}^{\prime \prime },x_{i}^{\prime \prime }) \right)}^{\beta }}}} \\ & R_{Ri}^{\prime \prime }(T_{Ri}^{\prime \prime },x_{i}^{\prime \prime })= & {{e}^{-{{(I(T_{Ri}^{\prime \prime },x_{i}^{\prime \prime }))}^{\beta }}}} \end{align}\,\! }[/math]

and:

  • [math]\displaystyle{ {{F}_{e}}\,\! }[/math] is the number of groups of exact time-to-failure data points.
  • [math]\displaystyle{ {{N}_{i}}\,\! }[/math] is the number of times-to-failure in the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] time-to-failure data group.
  • [math]\displaystyle{ {{T}_{i}}\,\! }[/math] is the exact failure time of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] group.
  • [math]\displaystyle{ S\,\! }[/math] is the number of groups of suspension data points.
  • [math]\displaystyle{ N_{i}^{\prime }\,\! }[/math] is the number of suspensions in the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] group of suspension data points.
  • [math]\displaystyle{ T_{i}^{\prime }\,\! }[/math] is the running time of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] suspension data group.
  • [math]\displaystyle{ FI\,\! }[/math] is the number of interval data groups.
  • [math]\displaystyle{ N_{i}^{\prime \prime }\,\! }[/math] is the number of intervals in the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] group of data intervals.
  • [math]\displaystyle{ T_{Li}^{\prime \prime }\,\! }[/math] is the beginning of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] interval.
  • [math]\displaystyle{ T_{Ri}^{\prime \prime }\,\! }[/math] is the ending of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] interval.

Cumulative Damage Arrhenius - Lognormal

Given a time-varying stress [math]\displaystyle{ x(t)\,\! }[/math] and assuming the Arrhenius relationship, the median life is given by:

[math]\displaystyle{ \frac{1}{\breve{T}(t,x)}=s(t,x)=\frac{{{e}^{\tfrac{-b}{x(t)}}}}{C}\,\! }[/math]

The reliability function of the unit under a single stress is given by:

[math]\displaystyle{ \begin{align} R(t,x(t))=1-\Phi (z) \end{align}\,\! }[/math]

where:

[math]\displaystyle{ z(t,x)=\frac{\ln I(t,x)}{\sigma _{T}^{\prime }}\,\! }[/math]

and:

[math]\displaystyle{ I(t,\,x)=\underset{0}{\mathop{\overset{t}{\mathop{\int_{}^{}}}\,}}\,\frac{{{e}^{\tfrac{-b}{x(u)}}}}{C}du\,\! }[/math]

Therefore, the pdf is:

[math]\displaystyle{ f(t,x)=\frac{s(t,x)\varphi (z(t,x))}{\sigma _{T}^{\prime }I(t,x)}\,\! }[/math]

Parameter estimation can be accomplished via maximum likelihood estimation methods, and confidence intervals can be approximated using the Fisher matrix approach. Once the parameters are determined, all other characteristics of interest can be obtained utilizing the statistical properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-likelihood equation is as follows,

[math]\displaystyle{ \begin{align} & \ln (L)= & \Lambda =\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}\ln [\frac{s({{T}_{i}},{{x}_{i}})\varphi (z({{T}_{i}},{{x}_{i}}))}{\sigma _{T}^{\prime }I({{T}_{i}},{{x}_{i}})}] \overset{S}{\mathop{+\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime }\ln \left( 1-\Phi (z(T_{i}^{\prime },x_{i}^{\prime })) \right)+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [\Phi (z_{Ri}^{\prime \prime })-\Phi (z_{Li}^{\prime \prime })] \end{align}\,\! }[/math]

where:

[math]\displaystyle{ \begin{align} & z_{Ri}^{\prime \prime }= & \frac{\ln I(T_{Ri}^{\prime \prime },x_{i}^{\prime \prime })}{\sigma _{T}^{\prime }} \\ & z_{Li}^{\prime \prime }= & \frac{\ln I(T_{Li}^{\prime \prime },x_{i}^{\prime \prime })}{\sigma _{T}^{\prime }} \end{align}\,\! }[/math]

and:

  • [math]\displaystyle{ {{F}_{e}}\,\! }[/math] is the number of groups of exact times-to-failure data points.
  • [math]\displaystyle{ {{N}_{i}}\,\! }[/math] is the number of times-to-failure in the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] time-to-failure data group.
  • [math]\displaystyle{ {{T}_{i}}\,\! }[/math] is the exact failure time of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] group.
  • [math]\displaystyle{ S\,\! }[/math] is the number of groups of suspension data points.
  • [math]\displaystyle{ N_{i}^{\prime }\,\! }[/math] is the number of suspensions in the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] group of suspension data points.
  • [math]\displaystyle{ T_{i}^{\prime }\,\! }[/math] is the running time of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] suspension data group.
  • [math]\displaystyle{ FI\,\! }[/math] is the number of interval data groups.
  • [math]\displaystyle{ N_{i}^{\prime \prime }\,\! }[/math] is the number of intervals in the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] group of data intervals.
  • [math]\displaystyle{ T_{Li}^{\prime \prime }\,\! }[/math] is the beginning of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] interval.
  • [math]\displaystyle{ T_{Ri}^{\prime \prime }\,\! }[/math] is the ending of the [math]\displaystyle{ {{i}^{th}}\,\! }[/math] interval.