Duane Confidence Bounds Example

From ReliaWiki
Revision as of 21:12, 21 November 2013 by Kate Racaza (talk | contribs) (Created page with '<noinclude>{{Banner RGA Examples}} ''This example appears in the Reliability Growth and Repairable System Analysis Reference book''. </noinclude> Using the valu…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
RGA Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at RGA examples and RGA reference examples.




This example appears in the Reliability Growth and Repairable System Analysis Reference book.


Using the values of [math]\displaystyle{ \widehat{b}\,\! }[/math] and [math]\displaystyle{ \widehat{\alpha }\,\! }[/math] estimated from the least squares analysis in Least Square Example 2:

[math]\displaystyle{ \widehat{b}=1.9453\,\! }[/math]
[math]\displaystyle{ \widehat{\alpha}=0.6133\,\! }[/math]


calculate the 90% confidence bounds for:

  1. The parameters [math]\displaystyle{ \alpha\,\! }[/math] and [math]\displaystyle{ b\,\! }[/math].
  2. The cumulative and instantaneous failure intensity.
  3. The cumulative and instantaneous MTBF.

Solution

1. Use the values of [math]\displaystyle{ \widehat{b}\,\! }[/math] and [math]\displaystyle{ \widehat{\alpha }\,\! }[/math] estimated from the least squares analysis. Then:

[math]\displaystyle{ \begin{align} {{S}_{xx}}&=\left[ \underset{i=1}{\overset{n}{\mathop \sum }}\,{{(\ln {{t}_{i}})}^{2}} \right]-\frac{1}{n}{{\left( \underset{i=1}{\overset{n}{\mathop \sum }}\,\ln ({{t}_{i}}) \right)}^{2}} \\ & = 1400.9084-1301.4545 \\ & = 99.4539 \end{align}\,\! }[/math]


[math]\displaystyle{ \begin{align} SE(\hat{\alpha })= & \frac{\sigma }{\sqrt{{{S}_{xx}}}} \\ = & \frac{0.08428}{9.9727} \\ = & 0.008452 \end{align}\,\! }[/math]


[math]\displaystyle{ \begin{align} SE(\ln \hat{b})= & \sigma \cdot \sqrt{\frac{\underset{i=1}{\overset{n}{\mathop{\sum }}}\,{{(\ln {{T}_{i}})}^{2}}}{n\cdot {{S}_{xx}}}} \\ = & 0.065960 \end{align}\,\! }[/math]


Thus, the 90% confidence bounds on parameter [math]\displaystyle{ \alpha \,\! }[/math] are:

[math]\displaystyle{ C{{B}_{\alpha }}=\hat{\alpha }\pm {{t}_{n-2,\alpha /2}}SE(\hat{\alpha })\,\! }[/math]
[math]\displaystyle{ \begin{align} {{\alpha }_{L}}= & 0.602050 \\ {{\alpha }_{U}}= & 0.624417 \end{align}\,\! }[/math]


And 90% confidence bounds on parameter [math]\displaystyle{ b\,\! }[/math] are:

[math]\displaystyle{ C{{B}_{b}}=\hat{b}{{e}^{\pm {{t}_{n-2,\alpha /2}}SE\left[ \ln (\hat{b}) \right]}}\,\! }[/math]
[math]\displaystyle{ \begin{align} {{b}_{L}}= & 1.7831 \\ {{b}_{U}}= & 2.1231 \end{align}\,\! }[/math]


2. The cumulative failure intensity is:

[math]\displaystyle{ \begin{align} {{\lambda }_{c}}= & \frac{1}{1.9453}\cdot {{22000}^{-0.6133}} \\ = & 0.00111689 \end{align}\,\! }[/math]


And the instantaneous failure intensity is equal to:

[math]\displaystyle{ \begin{align} {{\lambda }_{i}}= & \frac{1}{1.9453}\cdot (1-0.6133)\cdot {{22000}^{-0.6133}} \\ = & 0.00043198 \end{align}\,\! }[/math]


So, at the 90% confidence level and for [math]\displaystyle{ T=22,000\,\! }[/math] hours, the confidence bounds on cumulative failure intensity are:

[math]\displaystyle{ \begin{align} {{[{{\lambda }_{c}}(t)]}_{L}}= & 0.00100254 \\ {{[{{\lambda }_{c}}(t)]}_{U}}= & 0.00124429 \end{align}\,\! }[/math]


For the instantaneous failure intensity:

[math]\displaystyle{ \begin{align} {{[{{\lambda }_{i}}(t)]}_{L}}= & 0.00038775 \\ {{[{{\lambda }_{c}}(t)]}_{U}}= & 0.00048125 \end{align}\,\! }[/math]


The following figures show the graphs of the cumulative and instantaneous failure intensity. Both are plotted with confidence bounds.

Cumulative Failure Intensity plot with 2-sided 90% confidence bounds.


Instantaneous Failure Intensity plot with 2-sided 90% confidence bounds.


3. The cumulative MTBF is:

[math]\displaystyle{ \begin{align} {{m}_{c}}(T)= & 1.9453\cdot {{22000}^{0.6133}} \\ = & 895.3395 \end{align}\,\! }[/math]


And the instantaneous MTBF is:

[math]\displaystyle{ \begin{align} {{m}_{i}}(T)= & \frac{1.9453}{1-0.6133}\cdot {{22000}^{0.6133}} \\ = & 2314.9369 \end{align}\,\! }[/math]


So, at 90% confidence level and for [math]\displaystyle{ T=22,000\,\! }[/math] hours, the confidence bounds on the cumulative MTBF are:

[math]\displaystyle{ \begin{align} {{m}_{c}}{{(t)}_{l}}= & 803.6695 \\ {{m}_{c}}{{(t)}_{u}}= & 997.4658 \end{align}\,\! }[/math]


The confidence bounds for the instantaneous MTBF are:

[math]\displaystyle{ \begin{align} {{m}_{i}}{{(t)}_{l}}= & 2077.9204 \\ {{m}_{i}}{{(t)}_{u}}= & 2578.9886 \end{align}\,\! }[/math]


The figure below displays the cumulative MTBF.

Cumulative MTBF plot with 2-sided 90% condfidence bounds.

The next figure displays the instantaneous MTBF. Both are plotted with confidence bounds.

Instantaneous MTBF plot with 2-sided 90% confidence bounds.