Template:Acb-w on time: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '===Confidence Bounds on Time=== <br> The bounds around time, for a given lognormal percentile (unreliability), are estimated by first solving the reliability equation with respec…')
 
Line 1: Line 1:
===Confidence Bounds on Time===
====Confidence Bounds on Time====
<br>
<br>
The bounds around time, for a given lognormal percentile (unreliability), are estimated by first solving the reliability equation with respect to time, as follows:
The bounds around time, for a given lognormal percentile (unreliability), are estimated by first solving the reliability equation with respect to time, as follows:

Revision as of 00:03, 14 February 2012

Confidence Bounds on Time


The bounds around time, for a given lognormal percentile (unreliability), are estimated by first solving the reliability equation with respect to time, as follows:


[math]\displaystyle{ {T}'(V;\widehat{B},\widehat{C},{{\widehat{\sigma }}_{{{T}'}}})=\ln (\widehat{C})+\frac{\widehat{B}}{V}+z\cdot {{\widehat{\sigma }}_{{{T}'}}} }[/math]


where:


[math]\displaystyle{ \begin{align} & {T}'(V;\widehat{B},\widehat{C},{{\widehat{\sigma }}_{{{T}'}}})= & \ln (T) \\ & z= & {{\Phi }^{-1}}\left[ F({T}') \right] \end{align} }[/math]


and:


[math]\displaystyle{ \Phi (z)=\frac{1}{\sqrt{2\pi }}\mathop{}_{-\infty }^{z({T}')}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz }[/math]


The next step is to calculate the variance of [math]\displaystyle{ {T}'(V;\widehat{B},\widehat{C},{{\widehat{\sigma }}_{{{T}'}}}): }[/math]


[math]\displaystyle{ \begin{align} & Var({T}')= & {{\left( \frac{\partial {T}'}{\partial B} \right)}^{2}}Var(\widehat{B})+{{\left( \frac{\partial {T}'}{\partial C} \right)}^{2}}Var(\widehat{C})+{{\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\ & & +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial C} \right)Cov\left( \widehat{B},\widehat{C} \right) \\ & & +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ & & +2\left( \frac{\partial {T}'}{\partial C} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]



or:


[math]\displaystyle{ \begin{align} & Var({T}')= & \frac{1}{{{V}^{2}}}Var(\widehat{B})+\frac{1}{{{C}^{2}}}Var(\widehat{C})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) \\ & & +\frac{2}{B\cdot C}Cov\left( \widehat{B},\widehat{C} \right) \\ & & +\frac{2\widehat{z}}{V}Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) \\ & & +\frac{2\widehat{z}}{C}Cov\left( \widehat{C},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]



The upper and lower bounds are then found by:



[math]\displaystyle{ \begin{align} & T_{U}^{\prime }= & \ln {{T}_{U}}={T}'+{{K}_{\alpha }}\sqrt{Var({T}')} \\ & T_{L}^{\prime }= & \ln {{T}_{L}}={T}'-{{K}_{\alpha }}\sqrt{Var({T}')} \end{align} }[/math]


Solving for [math]\displaystyle{ {{T}_{U}} }[/math] and [math]\displaystyle{ {{T}_{L}} }[/math] yields:


[math]\displaystyle{ \begin{align} & {{T}_{U}}= & {{e}^{T_{U}^{\prime }}}\text{ (Upper bound)} \\ & {{T}_{L}}= & {{e}^{T_{L}^{\prime }}}\text{ (Lower bound)} \end{align} }[/math]




The material on this page is copyrighted. ©1992-2012. ReliaSoft Corporation. ALL RIGHTS RESERVED.