Template:Bayesian Confidence Bounds ED: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 36: Line 36:




::<math>T=\frac{-\ln R}{\lambda }</math>
::<math>t=\frac{-\ln R}{\lambda }</math>




For the one-sided upper bound on time we have:
For the one-sided upper bound on time we have:


::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(T\le {{T}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln R}{\lambda }\le {{T}_{U}})</math>
::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(t\le {{T}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln R}{\lambda }\le {{T}_{U}})</math>




Eqn. (1SBT) can be rewritten in terms of <math>\lambda </math> as:
The above equation can be rewritten in terms of <math>\lambda </math> as:


::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln R}{{{T}_{U}}}\le \lambda )</math>
::<math>CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln R}{{{T}_{U}}}\le \lambda )</math>




From Eqn (postL), we have:
From the above posterior distribuiton equation, we have:


::<math>CL=\frac{\int_{\tfrac{-\ln R}{{{T}_{U}}}}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda }{\int_{0}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda }</math>
::<math>CL=\frac{\int_{\tfrac{-\ln R}{{{T}_{U}}}}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda }{\int_{0}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda }</math>




Eqn. (1CBT) is solved w.r.t. <math>{{T}_{U}}.</math> The same method is applied for one-sided lower and two-sided bounds on time.
The above equation is solved w.r.t. <math>{{T}_{U}}.</math> The same method is applied for one-sided lower and two-sided bounds on time.


===Bounds on Reliability (Type 2)===
===Bounds on Reliability (Type 2)===

Revision as of 00:42, 8 February 2012


Bayesian Confidence Bounds

Bounds on Parameters

From Chapter 5, we know that the posterior distribution of [math]\displaystyle{ \lambda }[/math] can be written as:


[math]\displaystyle{ f(\lambda |Data)=\frac{L(Data|\lambda )\varphi (\lambda )}{\int_{0}^{\infty }L(Data|\lambda )\varphi (\lambda )d\lambda } }[/math]

where [math]\displaystyle{ \varphi (\lambda )=\tfrac{1}{\lambda } }[/math], is the non-informative prior of [math]\displaystyle{ \lambda }[/math].

With the above prior distribution, [math]\displaystyle{ f(\lambda |Data) }[/math] can be rewritten as:


[math]\displaystyle{ f(\lambda |Data)=\frac{L(Data|\lambda )\tfrac{1}{\lambda }}{\int_{0}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda } }[/math]


The one-sided upper bound of [math]\displaystyle{ \lambda }[/math] is:


[math]\displaystyle{ CL=P(\lambda \le {{\lambda }_{U}})=\int_{0}^{{{\lambda }_{U}}}f(\lambda |Data)d\lambda }[/math]


The one-sided lower bound of [math]\displaystyle{ \lambda }[/math] is:


[math]\displaystyle{ 1-CL=P(\lambda \le {{\lambda }_{L}})=\int_{0}^{{{\lambda }_{L}}}f(\lambda |Data)d\lambda }[/math]


The two-sided bounds of [math]\displaystyle{ \lambda }[/math] are:


[math]\displaystyle{ CL=P({{\lambda }_{L}}\le \lambda \le {{\lambda }_{U}})=\int_{{{\lambda }_{L}}}^{{{\lambda }_{U}}}f(\lambda |Data)d\lambda }[/math]

Bounds on Time (Type 1)

The reliable life equation is:


[math]\displaystyle{ t=\frac{-\ln R}{\lambda } }[/math]


For the one-sided upper bound on time we have:

[math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(t\le {{T}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln R}{\lambda }\le {{T}_{U}}) }[/math]


The above equation can be rewritten in terms of [math]\displaystyle{ \lambda }[/math] as:

[math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln R}{{{T}_{U}}}\le \lambda ) }[/math]


From the above posterior distribuiton equation, we have:

[math]\displaystyle{ CL=\frac{\int_{\tfrac{-\ln R}{{{T}_{U}}}}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda }{\int_{0}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda } }[/math]


The above equation is solved w.r.t. [math]\displaystyle{ {{T}_{U}}. }[/math] The same method is applied for one-sided lower and two-sided bounds on time.

Bounds on Reliability (Type 2)

The one-sided upper bound on reliability is given by:

[math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(R\le {{R}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,(\exp (-\lambda T)\le {{R}_{U}}) }[/math]


Eqn. (1SBR) can be rewritten in terms of [math]\displaystyle{ \lambda }[/math] as:

[math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\frac{-\ln {{R}_{U}}}{T}\le \lambda ) }[/math]


From Eqn (postL), we have:

[math]\displaystyle{ CL=\frac{\int_{\tfrac{-\ln {{R}_{U}}}{T}}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda }{\int_{0}^{\infty }L(Data|\lambda )\tfrac{1}{\lambda }d\lambda } }[/math]


Eqn. (1CBR) is solved w.r.t. [math]\displaystyle{ {{R}_{U}}. }[/math] The same method can be used to calculate one-sided lower and two sided bounds on reliability.