Template:Determining units for available test time: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:
and  <math>{{t}_{DEMO}}</math>,  <math>\theta </math>  and  <math>\phi </math>  are already known, and it is just a matter of plugging these values into the appropriate reliability equation.
and  <math>{{t}_{DEMO}}</math>,  <math>\theta </math>  and  <math>\phi </math>  are already known, and it is just a matter of plugging these values into the appropriate reliability equation.


We now incorporate a form of the cumulative binomial distribution in order to solve for the required number of units. This form of the cumulative binomial appears as:  
We now incorporate a form of the cumulative binomial distribution in order to solve for the required number of units. This form of the cumulative binomial appears as:  


<br>
<br>


::<math>1-CL=\underset{i=0}{\overset{f}{\mathop \sum }}\,\frac{n!}{i!\cdot (n-i)!}\cdot {{(1-{{R}_{TEST}})}^{i}}\cdot R_{TEST}^{(n-i)}</math>
<center><math>1-CL=\underset{i=0}{\overset{f}{\mathop \sum }}\,\frac{n!}{i!\cdot (n-i)!}\cdot {{(1-{{R}_{TEST}})}^{i}}\cdot R_{TEST}^{(n-i)}</math></center>


<br>
<br>
Line 26: Line 26:


::<math>\begin{align}
::<math>\begin{align}
  & CL=  \text{the required confidence level} \\  
& CL=  \text{the required confidence level} \\  
  & f= \text{the allowable number of failures} \\  
  & f= \text{the allowable number of failures} \\  
  & n=  \text{the total number of units on test} \\  
  & n=  \text{the total number of units on test} \\  

Revision as of 23:23, 29 March 2012

Determining Units for Available Test Time

If one knows that the test is to last a certain amount of time, [math]\displaystyle{ {{t}_{TEST}} }[/math], the number of units that must be tested to demonstrate the specification must be determined. The first step in accomplishing this involves calculating the [math]\displaystyle{ {{R}_{TEST}} }[/math] value.

This should be a simple procedure since:


[math]\displaystyle{ {{R}_{TEST}}=g({{t}_{TEST}};\theta ,\phi ) }[/math]


and [math]\displaystyle{ {{t}_{DEMO}} }[/math], [math]\displaystyle{ \theta }[/math] and [math]\displaystyle{ \phi }[/math] are already known, and it is just a matter of plugging these values into the appropriate reliability equation.

We now incorporate a form of the cumulative binomial distribution in order to solve for the required number of units. This form of the cumulative binomial appears as:


[math]\displaystyle{ 1-CL=\underset{i=0}{\overset{f}{\mathop \sum }}\,\frac{n!}{i!\cdot (n-i)!}\cdot {{(1-{{R}_{TEST}})}^{i}}\cdot R_{TEST}^{(n-i)} }[/math]


where:


[math]\displaystyle{ \begin{align} & CL= \text{the required confidence level} \\ & f= \text{the allowable number of failures} \\ & n= \text{the total number of units on test} \\ & {{R}_{TEST}}= \text{the reliability on test} \end{align} }[/math]


Since [math]\displaystyle{ CL }[/math] and [math]\displaystyle{ f }[/math] are required inputs to the process and [math]\displaystyle{ {{R}_{TEST}} }[/math] has already been calculated, it merely remains to solve the cumulative binomial equation for [math]\displaystyle{ n }[/math], the number of units that need to be tested.