Template:Gumbel probability paper: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
==Probability Paper==
==Probability Paper==
The form of the Gumbel probability paper is based on a linearization of the  <math>cdf</math> . From Eqn. (UnrGumbel):  
The form of the Gumbel probability paper is based on a linearization of the  <math>cdf</math> . From the unreliabililty equation, we know:


::<math>z=\ln (-\ln (1-F))</math>
::<math>z=\ln (-\ln (1-F))</math>


using the equation for ''z'', we get:


:using Eqns. (z3):
::<math>\frac{t-\mu }{\sigma }=\ln (-\ln (1-F))</math>


::<math>\frac{T-\mu }{\sigma }=\ln (-\ln (1-F))</math>
Then:  


::<math>\ln (-\ln (1-F))=-\frac{\mu }{\sigma }+\frac{1}{\sigma }t</math>


:Then:
Now let:  
 
::<math>\ln (-\ln (1-F))=-\frac{\mu }{\sigma }+\frac{1}{\sigma }T</math>
 
 
:Now let:  


::<math>y=\ln (-\ln (1-F))</math>
::<math>y=\ln (-\ln (1-F))</math>


::<math>x=t</math>
 
::<math>x=T</math>


 
and:  
:and:  


::<math>\begin{align}
::<math>\begin{align}
Line 35: Line 29:


::<math>y=a+bx</math>
::<math>y=a+bx</math>


The Gumbel probability paper resulting from this linearized  <math>cdf</math>  function is shown next.
The Gumbel probability paper resulting from this linearized  <math>cdf</math>  function is shown next.
Line 41: Line 34:
[[Image:probabilitygumbel.gif|thumb|center|400px| ]]  
[[Image:probabilitygumbel.gif|thumb|center|400px| ]]  


For  <math>z=0</math> ,  <math>T=\mu </math>  and  <math>R(t)={{e}^{-{{e}^{0}}}}\approx 0.3678</math>  (63.21% unreliability). For  <math>z=1</math> ,  <math>\sigma =T-\mu </math>  and  <math>R(t)={{e}^{-{{e}^{1}}}}\approx 0.0659.</math>  To read  <math>\mu </math>  from the plot, find the time value that corresponds to the intersection of the probability plot with the 63.21% unreliability line. To read  <math>\sigma </math>  from the plot, find the time value that corresponds to the intersection of the probability plot with the 93.40% unreliability line, then take the difference between this time value and the  <math>\mu </math>  value.
For  <math>z=0</math> ,  <math>t=\mu </math>  and  <math>R(t)={{e}^{-{{e}^{0}}}}\approx 0.3678</math>  (63.21% unreliability). For  <math>z=1</math> ,  <math>\sigma =T-\mu </math>  and  <math>R(t)={{e}^{-{{e}^{1}}}}\approx 0.0659.</math>  To read  <math>\mu </math>  from the plot, find the time value that corresponds to the intersection of the probability plot with the 63.21% unreliability line. To read  <math>\sigma </math>  from the plot, find the time value that corresponds to the intersection of the probability plot with the 93.40% unreliability line, then take the difference between this time value and the  <math>\mu </math>  value.

Revision as of 18:36, 20 February 2012

Probability Paper

The form of the Gumbel probability paper is based on a linearization of the [math]\displaystyle{ cdf }[/math] . From the unreliabililty equation, we know:

[math]\displaystyle{ z=\ln (-\ln (1-F)) }[/math]

using the equation for z, we get:

[math]\displaystyle{ \frac{t-\mu }{\sigma }=\ln (-\ln (1-F)) }[/math]

Then:

[math]\displaystyle{ \ln (-\ln (1-F))=-\frac{\mu }{\sigma }+\frac{1}{\sigma }t }[/math]

Now let:

[math]\displaystyle{ y=\ln (-\ln (1-F)) }[/math]
[math]\displaystyle{ x=t }[/math]

and:

[math]\displaystyle{ \begin{align} & a= & -\frac{\mu }{\sigma } \\ & b= & \frac{1}{\sigma } \end{align} }[/math]


which results in the linear equation of:

[math]\displaystyle{ y=a+bx }[/math]

The Gumbel probability paper resulting from this linearized [math]\displaystyle{ cdf }[/math] function is shown next.

Probabilitygumbel.gif

For [math]\displaystyle{ z=0 }[/math] , [math]\displaystyle{ t=\mu }[/math] and [math]\displaystyle{ R(t)={{e}^{-{{e}^{0}}}}\approx 0.3678 }[/math] (63.21% unreliability). For [math]\displaystyle{ z=1 }[/math] , [math]\displaystyle{ \sigma =T-\mu }[/math] and [math]\displaystyle{ R(t)={{e}^{-{{e}^{1}}}}\approx 0.0659. }[/math] To read [math]\displaystyle{ \mu }[/math] from the plot, find the time value that corresponds to the intersection of the probability plot with the 63.21% unreliability line. To read [math]\displaystyle{ \sigma }[/math] from the plot, find the time value that corresponds to the intersection of the probability plot with the 93.40% unreliability line, then take the difference between this time value and the [math]\displaystyle{ \mu }[/math] value.