Template:Logistic probability paper: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 1: Line 1:
==Logistic Distribution Probability Paper==
==Logistic Distribution Probability Paper==
The form of the Logistic probability paper is based on linearizing the  <math>cdf</math> .  
The form of the Logistic probability paper is based on linearizing the  <math>cdf</math> .  
From unreliability equation,  <math>z</math>  can be calculated as a function of the  <math>cdf</math>  <math>F</math>  as follows:  
From unreliability equation,  <math>z</math>  can be calculated as a function of the  <math>cdf</math>  <math>F</math>  as follows:  
Line 32: Line 31:
The logistic probability paper resulting from this linearized  <math>cdf</math>  function is shown next.
The logistic probability paper resulting from this linearized  <math>cdf</math>  function is shown next.


[[Image:ldaLD10.4.gif|thumb|center|400px| ]]  
[[Image:WB.14 logistic probability plot.png|center|400px| ]]  


Since the logistic distribution is symmetrical, the area under the  <math>pdf</math>  curve from  <math>-\infty </math>  to  <math>\mu </math>  is  <math>0.5</math> , as is the area from  <math>\mu </math>  to  <math>+\infty </math> . Consequently, the value of  <math>\mu </math>  is said to be the point where  <math>R(t)=Q(t)=50%</math> .  This means that the estimate of  <math>\mu </math>  can be read from the point where the plotted line crosses the 50% unreliability line.
Since the logistic distribution is symmetrical, the area under the  <math>pdf</math>  curve from  <math>-\infty </math>  to  <math>\mu </math>  is  <math>0.5</math> , as is the area from  <math>\mu </math>  to  <math>+\infty </math> . Consequently, the value of  <math>\mu </math>  is said to be the point where  <math>R(t)=Q(t)=50%</math> .  This means that the estimate of  <math>\mu </math>  can be read from the point where the plotted line crosses the 50% unreliability line.


For  <math>z=1</math> ,  <math>\sigma =t-\mu </math>  and  <math>R(t)=\tfrac{1}{1+\exp (1)}\approx 0.2689.</math>  Therefore,  <math>\sigma </math>  can be found by subtracting  <math>\mu </math>  from the time value where the plotted probability line crosses the 73.10% unreliability (26.89% reliability) horizontal line.
For  <math>z=1</math> ,  <math>\sigma =t-\mu </math>  and  <math>R(t)=\tfrac{1}{1+\exp (1)}\approx 0.2689.</math>  Therefore,  <math>\sigma </math>  can be found by subtracting  <math>\mu </math>  from the time value where the plotted probability line crosses the 73.10% unreliability (26.89% reliability) horizontal line.

Revision as of 17:32, 15 March 2012

Logistic Distribution Probability Paper

The form of the Logistic probability paper is based on linearizing the [math]\displaystyle{ cdf }[/math] . From unreliability equation, [math]\displaystyle{ z }[/math] can be calculated as a function of the [math]\displaystyle{ cdf }[/math] [math]\displaystyle{ F }[/math] as follows:

[math]\displaystyle{ z=\ln (F)-\ln (1-F) }[/math]

or using the equation for z

[math]\displaystyle{ \frac{t-\mu }{\sigma }=\ln (F)-\ln (1-F) }[/math]

Then:

[math]\displaystyle{ \ln (F)-\ln (1-F)=-\frac{\mu }{\sigma }+\frac{1}{\sigma }t }[/math]

Now let:

[math]\displaystyle{ y=\ln (F)-\ln (1-F) }[/math]
[math]\displaystyle{ x=t }[/math]

and:

[math]\displaystyle{ a=-\frac{\mu }{\sigma } }[/math]
[math]\displaystyle{ b=\frac{1}{\sigma } }[/math]

which results in the following linear equation:

[math]\displaystyle{ y=a+bx }[/math]

The logistic probability paper resulting from this linearized [math]\displaystyle{ cdf }[/math] function is shown next.

WB.14 logistic probability plot.png

Since the logistic distribution is symmetrical, the area under the [math]\displaystyle{ pdf }[/math] curve from [math]\displaystyle{ -\infty }[/math] to [math]\displaystyle{ \mu }[/math] is [math]\displaystyle{ 0.5 }[/math] , as is the area from [math]\displaystyle{ \mu }[/math] to [math]\displaystyle{ +\infty }[/math] . Consequently, the value of [math]\displaystyle{ \mu }[/math] is said to be the point where [math]\displaystyle{ R(t)=Q(t)=50% }[/math] . This means that the estimate of [math]\displaystyle{ \mu }[/math] can be read from the point where the plotted line crosses the 50% unreliability line.

For [math]\displaystyle{ z=1 }[/math] , [math]\displaystyle{ \sigma =t-\mu }[/math] and [math]\displaystyle{ R(t)=\tfrac{1}{1+\exp (1)}\approx 0.2689. }[/math] Therefore, [math]\displaystyle{ \sigma }[/math] can be found by subtracting [math]\displaystyle{ \mu }[/math] from the time value where the plotted probability line crosses the 73.10% unreliability (26.89% reliability) horizontal line.