Template:Lognormal distribution bayesian confidence bounds

From ReliaWiki
Jump to navigation Jump to search

Bayesian Confidence Bounds

Bounds on Parameters

From Chapter Parameter Estimation, we know that the marginal distribution of parameter [math]\displaystyle{ {\mu }' }[/math] is:

[math]\displaystyle{ \begin{align} f({\mu }'|Data)= & \int_{0}^{\infty }f({\mu }',{{\sigma'}}|Data)d{{\sigma'}} \\ = & \frac{\int_{0}^{\infty }L(Data|{\mu }',{{\sigma'}})\varphi ({\mu }')\varphi ({{\sigma'}})d{{\sigma'}}}{\int_{0}^{\infty }\int_{-\infty }^{\infty }L(Data|{\mu }',{{\sigma'}})\varphi ({\mu }')\varphi ({{\sigma'}})d{\mu }'d{{\sigma'}}} \end{align} }[/math]
where:
[math]\displaystyle{ \varphi ({{\sigma ‘}}) }[/math] is [math]\displaystyle{ \tfrac{1}{{{\sigma ‘}}} }[/math] , non-informative prior of [math]\displaystyle{ {{\sigma ‘}} }[/math] .

[math]\displaystyle{ \varphi ({\mu }') }[/math] is an uniform distribution from - [math]\displaystyle{ \infty }[/math] to + [math]\displaystyle{ \infty }[/math] , non-informative prior of [math]\displaystyle{ {\mu }' }[/math] . With the above prior distributions, [math]\displaystyle{ f({\mu }'|Data) }[/math] can be rewritten as:


[math]\displaystyle{ f({\mu }'|Data)=\frac{\int_{0}^{\infty }L(Data|{\mu }',{{\sigma ‘}})\tfrac{1}{{{\sigma ‘}}}d{{\sigma ‘}}}{\int_{0}^{\infty }\int_{-\infty }^{\infty }L(Data|{\mu }',{{\sigma ‘}})\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}} }[/math]


The one-sided upper bound of [math]\displaystyle{ {\mu }' }[/math] is:


[math]\displaystyle{ CL=P({\mu }'\le \mu _{U}^{\prime })=\int_{-\infty }^{\mu _{U}^{\prime }}f({\mu }'|Data)d{\mu }' }[/math]


The one-sided lower bound of [math]\displaystyle{ {\mu }' }[/math] is:


[math]\displaystyle{ 1-CL=P({\mu }'\le \mu _{L}^{\prime })=\int_{-\infty }^{\mu _{L}^{\prime }}f({\mu }'|Data)d{\mu }' }[/math]


The two-sided bounds of [math]\displaystyle{ {\mu }' }[/math] is:


[math]\displaystyle{ CL=P(\mu _{L}^{\prime }\le {\mu }'\le \mu _{U}^{\prime })=\int_{\mu _{L}^{\prime }}^{\mu _{U}^{\prime }}f({\mu }'|Data)d{\mu }' }[/math]


The same method can be used to obtained the bounds of [math]\displaystyle{ {{\sigma ‘}} }[/math] .

Bounds on Time (Type 1)

The reliable life of the lognormal distribution is:


[math]\displaystyle{ \ln T={\mu }'+{{\sigma ‘}}{{\Phi }^{-1}}(1-R) }[/math]


The one-sided upper on time bound is given by:


[math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(\ln T\le \ln {{T}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'+{{\sigma ‘}}{{\Phi }^{-1}}(1-R)\le \ln {{T}_{U}}) }[/math]


Eqn. (1SBT) can be rewritten in terms of [math]\displaystyle{ {\mu }' }[/math] as:


[math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'\le \ln {{T}_{U}}-{{\sigma ‘}}{{\Phi }^{-1}}(1-R) }[/math]


From the posterior distribution of [math]\displaystyle{ {\mu }' }[/math] get:


[math]\displaystyle{ CL=\frac{\int_{0}^{\infty }\int_{-\infty }^{\ln {{T}_{U}}-{{\sigma ‘}}{{\Phi }^{-1}}(1-R)}L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}}{\int_{0}^{\infty }\int_{-\infty }^{\infty }L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}} }[/math]


Eqn. (1SCBT) is solved w.r.t. [math]\displaystyle{ {{T}_{U}}. }[/math] The same method can be applied for one-sided lower bounds and two-sided bounds on Time.


Bounds on Reliability (Type 2)

The one-sided upper bound on reliability is given by:


[math]\displaystyle{ CL=\underset{}{\overset{}{\mathop{\Pr }}}\,(R\le {{R}_{U}})=\underset{}{\overset{}{\mathop{\Pr }}}\,({\mu }'\le \ln T-{{\sigma ‘}}{{\Phi }^{-1}}(1-{{R}_{U}})) }[/math]


From the posterior distribution of [math]\displaystyle{ {\mu }' }[/math] is:


[math]\displaystyle{ CL=\frac{\int_{0}^{\infty }\int_{-\infty }^{\ln T-{{\sigma ‘}}{{\Phi }^{-1}}(1-{{R}_{U}})}L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}}{\int_{0}^{\infty }\int_{-\infty }^{\infty }L({{\sigma ‘}},{\mu }')\tfrac{1}{{{\sigma ‘}}}d{\mu }'d{{\sigma ‘}}} }[/math]


Eqn. (1SCBR) is solved w.r.t. [math]\displaystyle{ {{R}_{U}}. }[/math] The same method is used to calculate the one-sided lower bounds and two-sided bounds on Reliability.

Example 8: {{Example: Lognormal Distr