Template:ProbabilityDensitynCumulativeDistributionFunctions: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 18: Line 18:
The cumulative distribution function, <math>cdf</math>, is a function <math>F(x)</math> of a random variable, <math>X</math>, and is defined for a number <math>x</math> by:
The cumulative distribution function, <math>cdf</math>, is a function <math>F(x)</math> of a random variable, <math>X</math>, and is defined for a number <math>x</math> by:


[[Image:pdf_cdf.png|center|400px|]]
[[Image:pdf_cdf.png|center|200px|]]


::<math>F(x)=P(X\le x)=\int_0^x f(s)ds </math>
::<math>F(x)=P(X\le x)=\int_0^x f(s)ds </math>
Line 26: Line 26:
<br>
<br>
<br>
<br>
[[Image:pdf_cdf2.png|400px|center]]
[[Image:pdf_cdf2.png|200px|center]]


'''Mathematical Relationship Between the <math>pdf</math> and <math>cdf</math>'''
'''Mathematical Relationship Between the <math>pdf</math> and <math>cdf</math>'''
Line 43: Line 43:




[[Image:100_percent.png|center|400px|]]
[[Image:100_percent.png|center|200px|]]


    
    

Revision as of 16:43, 25 April 2012

The Probability Density and Cumulative Distribution Functions

Designations

From probability and statistics, given a continuous random variable, we denote:

  • The probability density function, pdf, as f(x).
  • The cumulative distribution function, cdf, as F(x).

The pdf and cdf give a complete description of the probability distribution of a random variable.

Definitions

If [math]\displaystyle{ X }[/math] is a continuous random variable, then the probability density function, [math]\displaystyle{ pdf }[/math], of [math]\displaystyle{ X }[/math], is a function [math]\displaystyle{ f(x) }[/math] such that for two numbers, [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] with [math]\displaystyle{ a\le b }[/math]:

[math]\displaystyle{ P(a \le X \le b)=\int_a^b f(x)dx }[/math] and [math]\displaystyle{ f(x)\ge 0 }[/math] for all x.

That is, the probability that takes on a value in the interval [a,b] is the area under the density function from [math]\displaystyle{ a }[/math] to [math]\displaystyle{ b }[/math]. The cumulative distribution function, [math]\displaystyle{ cdf }[/math], is a function [math]\displaystyle{ F(x) }[/math] of a random variable, [math]\displaystyle{ X }[/math], and is defined for a number [math]\displaystyle{ x }[/math] by:

Pdf cdf.png
[math]\displaystyle{ F(x)=P(X\le x)=\int_0^x f(s)ds }[/math]

That is, for a given value [math]\displaystyle{ x }[/math], [math]\displaystyle{ F(x) }[/math] is the probability that the observed value of [math]\displaystyle{ X }[/math] will be at most [math]\displaystyle{ x }[/math]. Note that the limits of integration depend on the domain of [math]\displaystyle{ f(x) }[/math]. For example, for all the distributions considered in this reference, this domain would be [math]\displaystyle{ [0,+\infty] }[/math], [math]\displaystyle{ [-\infty ,+\infty] }[/math] or [math]\displaystyle{ [\gamma ,+\infty] }[/math]. In the case of [math]\displaystyle{ [\gamma ,+\infty ] }[/math], we use the constant [math]\displaystyle{ \gamma }[/math] to denote an arbitrary non-zero point (or a location that indicates the starting point for the distribution). The next figure illustrates the relationship between the probability density function and the cumulative distribution function.

Pdf cdf2.png

Mathematical Relationship Between the [math]\displaystyle{ pdf }[/math] and [math]\displaystyle{ cdf }[/math]

The mathematical relationship between the [math]\displaystyle{ pdf }[/math] and [math]\displaystyle{ cdf }[/math] is given by:

[math]\displaystyle{ F(x)=\int_{-\infty }^x f(s)ds }[/math]

Conversely:

[math]\displaystyle{ f(x)=\frac{d(F(x))}{dx} }[/math]

In plain English, the value of the [math]\displaystyle{ cdf }[/math] at [math]\displaystyle{ x }[/math] is the area under the probability density function up to [math]\displaystyle{ x }[/math], if so chosen. It should also be pointed out that the total area under the [math]\displaystyle{ pdf }[/math] is always equal to 1, or mathematically:

[math]\displaystyle{ \int_{-\infty }^{\infty }f(x)dx=1 }[/math]


100 percent.png


An example of a probability density function is the well-known normal distribution, whose [math]\displaystyle{ pdf }[/math] is given by:

[math]\displaystyle{ f(t)={\frac{1}{\sigma \sqrt{2\pi }}}{e^{-\frac{1}{2}}(\frac{t-\mu}{\sigma})^2} }[/math]

where [math]\displaystyle{ \mu }[/math] is the mean and [math]\displaystyle{ \sigma }[/math] is the standard deviation. The normal distribution is a two-parameter distribution, i.e. with two parameters [math]\displaystyle{ \mu }[/math] and [math]\displaystyle{ \sigma }[/math]. Another two-parameter distribution is the lognormal distribution, whose [math]\displaystyle{ pdf }[/math] is given by:

[math]\displaystyle{ f(t)=\frac{1}{t\cdot {{\sigma }^{\prime }}\sqrt{2\pi }}{e}^{-\tfrac{1}{2}(\tfrac{t^{\prime}-{\mu^{\prime}}}{\sigma^{\prime}})^2} }[/math]

where [math]\displaystyle{ t^{\prime} }[/math] is the natural logarithm of the times-to-failure, [math]\displaystyle{ \mu^{\prime} }[/math] is the mean of the natural logarithms of the times-to-failure and [math]\displaystyle{ \sigma^{\prime} }[/math] is the standard deviation of the natural logarithms of the times-to-failure, [math]\displaystyle{ t^{\prime } }[/math].