Template:TNT Lognormal

From ReliaWiki
Jump to navigation Jump to search

T-NT Lognormal


The [math]\displaystyle{ pdf }[/math] of the lognormal distribution is given by:


[math]\displaystyle{ f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]


where:


[math]\displaystyle{ {T}'=\ln (T) }[/math]


and:
[math]\displaystyle{ T= }[/math] times-to-failure.
[math]\displaystyle{ \overline{{{T}'}}= }[/math] mean of the natural logarithms of the times-to-failure.
[math]\displaystyle{ {{\sigma }_{{{T}'}}}= }[/math] standard deviation of the natural logarithms of the times-to-failure.


The median of the lognormal distribution is given by:


[math]\displaystyle{ \breve{T}={{e}^{{{\overline{T}}^{\prime }}}} }[/math]


The T-NT lognormal model [math]\displaystyle{ pdf }[/math] can be obtained by setting [math]\displaystyle{ \breve{T}=L(V) }[/math]. Therefore:


[math]\displaystyle{ \breve{T}=L(V)=\frac{C}{{{U}^{n}}}{{e}^{\tfrac{B}{V}}} }[/math]


or:


[math]\displaystyle{ {{e}^{{{\overline{T}}^{\prime }}}}=\frac{C}{{{U}^{n}}}{{e}^{\tfrac{B}{V}}} }[/math]


Thus:


[math]\displaystyle{ {{\overline{T}}^{\prime }}=\ln (C)-n\ln (U)+\frac{B}{V} }[/math]


Substituting the above equation into the lognormal [math]\displaystyle{ pdf }[/math] yields the T-NT lognormal model [math]\displaystyle{ pdf }[/math] or:


[math]\displaystyle{ f(T,U,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\ln (C)+n\ln (U)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]


T-N-T Lognormal Statistical Properties Summary


The Mean

The mean life of the T-NT lognormal model (mean of the times-to-failure), [math]\displaystyle{ \bar{T} }[/math] , is given by:


[math]\displaystyle{ \begin{align} & \bar{T}= & {{e}^{\bar{{T}'}+\tfrac{1}{2}\sigma _{{{T}'}}^{2}}} = & {{e}^{\ln (C)-n\ln (U)+\tfrac{B}{V}+\tfrac{1}{2}\sigma _{{{T}'}}^{2}}} \end{align} }[/math]


The mean of the natural logarithms of the times-to-failure, [math]\displaystyle{ {{\bar{T}}^{^{\prime }}} }[/math] , in terms of [math]\displaystyle{ \bar{T} }[/math] and [math]\displaystyle{ {{\sigma }_{T}} }[/math] is given by:


[math]\displaystyle{ {{\bar{T}}^{\prime }}=\ln \left( {\bar{T}} \right)-\frac{1}{2}\ln \left( \frac{\sigma _{T}^{2}}{{{{\bar{T}}}^{2}}}+1 \right) }[/math]


The Standard Deviation


The standard deviation of the T-NT lognormal model (standard deviation of the times-to-failure), [math]\displaystyle{ {{\sigma }_{T}} }[/math] , is given by:


[math]\displaystyle{ \begin{align} & {{\sigma }_{T}}= & \sqrt{\left( {{e}^{2\bar{{T}'}+\sigma _{{{T}'}}^{2}}} \right)\left( {{e}^{\sigma _{{{T}'}}^{2}}}-1 \right)} = & \sqrt{\left( {{e}^{2\left( \ln (C)-n\ln (U)+\tfrac{B}{V} \right)+\sigma _{{{T}'}}^{2}}} \right)\left( {{e}^{\sigma _{{{T}'}}^{2}}}-1 \right)} \end{align} }[/math]


The standard deviation of the natural logarithms of the times-to-failure, [math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math] , in terms of [math]\displaystyle{ \bar{T} }[/math] and [math]\displaystyle{ {{\sigma }_{T}} }[/math] is given by:


[math]\displaystyle{ {{\sigma }_{{{T}'}}}=\sqrt{\ln \left( \frac{\sigma _{T}^{2}}{{{{\bar{T}}}^{2}}}+1 \right)} }[/math]


The Mode


• The mode of the T-NT lognormal model is given by:


[math]\displaystyle{ \begin{align} & \tilde{T}= & {{e}^{{{\overline{T}}^{\prime }}-\sigma _{{{T}'}}^{2}}} = & {{e}^{\ln (C)-n\ln (U)+\tfrac{B}{V}-\sigma _{{{T}'}}^{2}}} \end{align} }[/math]


T-NT Lognormal Reliability


For the T-NT lognormal model, the reliability for a mission of time [math]\displaystyle{ T }[/math] , starting at age 0, for the T-NT lognormal model is determined by:


[math]\displaystyle{ R(T,U,V)=\int_{T}^{\infty }f(t,U,V)dt }[/math]


or:


[math]\displaystyle{ R(T,U,V)=\int_{{{T}^{^{\prime }}}}^{\infty }\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\ln (C)+n\ln (U)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}dt }[/math]


Reliable Life


For the T-NT lognormal model, the reliable life, or the mission duration for a desired reliability goal, [math]\displaystyle{ {{t}_{R}}, }[/math] is estimated by first solving the reliability equation with respect to time, as follows:


[math]\displaystyle{ T_{R}^{\prime }=\ln (C)-n\ln (U)+\frac{B}{V}+z\cdot {{\sigma }_{{{T}'}}} }[/math]


where:


[math]\displaystyle{ z={{\Phi }^{-1}}\left[ F\left( T_{R}^{\prime },U,V \right) \right] }[/math]


and:


[math]\displaystyle{ \Phi (z)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{z({T}',U,V)}{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt }[/math]


Since [math]\displaystyle{ {T}'=\ln (T) }[/math] the reliable life, [math]\displaystyle{ {{t}_{R}} }[/math] , is given by:


[math]\displaystyle{ {{t}_{R}}={{e}^{T_{R}^{\prime }}} }[/math]


Lognormal Failure Rate


The T-NT lognormal failure rate is given by:


[math]\displaystyle{ \lambda (T,U,V)=\frac{f(T,U,V)}{R(T,U,V)}=\frac{\tfrac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\ln (C)+n\ln (U)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}}{\int_{{{T}'}}^{\infty }\tfrac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\ln (C)+n\ln (U)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}dt} }[/math]


Parameter Estimation

Maximum Likelihood Estimation Method


The complete T-NT lognormal log-likelihood function is:


[math]\displaystyle{ \begin{align} & \ln (L)= & \Lambda =\underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \frac{1}{{{\sigma }_{{{T}'}}}{{T}_{i}}}{{\phi }_{pdf}}\left( \frac{\ln \left( {{T}_{i}} \right)-\ln (C)+n\ln ({{U}_{i}})-\tfrac{B}{{{V}_{i}}}}{{{\sigma }_{{{T}'}}}} \right) \right] \text{ }+\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }\ln \left[ 1-\Phi \left( \frac{\ln \left( T_{i}^{\prime } \right)-\ln (C)+n\ln ({{U}_{i}})-\tfrac{B}{{{V}_{i}}}}{{{\sigma }_{{{T}'}}}} \right) \right] +\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [\Phi (z_{Ri}^{\prime \prime })-\Phi (z_{Li}^{\prime \prime })] \end{align} }[/math]


where:


[math]\displaystyle{ z_{Ri}^{\prime \prime }=\frac{\ln T_{Ri}^{\prime \prime }-\ln C+n\ln U_{i}^{\prime \prime }-\tfrac{B}{{{V}_{i}}}}{\sigma _{T}^{\prime }} }[/math]


[math]\displaystyle{ z_{Li}^{\prime \prime }=\frac{\ln T_{Li}^{\prime \prime }-\ln C+n\ln U_{i}^{\prime \prime }-\tfrac{B}{{{V}_{i}}}}{\sigma _{T}^{\prime }} }[/math]


[math]\displaystyle{ \phi \left( x \right)=\frac{1}{\sqrt{2\pi }}\cdot {{e}^{-\tfrac{1}{2}{{\left( x \right)}^{2}}}} }[/math]


[math]\displaystyle{ \Phi (x)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{x}{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt }[/math]


and:
[math]\displaystyle{ {{F}_{e}} }[/math] is the number of groups of exact times-to-failure data points.
[math]\displaystyle{ {{N}_{i}} }[/math] is the number of times-to-failure data points in the [math]\displaystyle{ {{i}^{th}} }[/math] time-to-failure data group.
[math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math] is the standard deviation of the natural logarithm of the times-to-failure (unknown, the first of four parameters to be estimated).
[math]\displaystyle{ B }[/math] is the first T-NT parameter (unknown, the second of four parameters to be estimated).
[math]\displaystyle{ C }[/math] is the second T-NT parameter (unknown, the third of four parameters to be estimated).
[math]\displaystyle{ n }[/math] is the third T-NT parameter (unknown, the fourth of four parameters to be estimated).
[math]\displaystyle{ {{V}_{i}} }[/math] is the stress level for the first stress type (i.e. temperature) of the [math]\displaystyle{ {{i}^{th}} }[/math] group.
[math]\displaystyle{ {{U}_{i}} }[/math] is the stress level for the second stress type (i.e. non-thermal) of the [math]\displaystyle{ {{i}^{th}} }[/math] group.
[math]\displaystyle{ {{T}_{i}} }[/math] is the exact failure time of the [math]\displaystyle{ {{i}^{th}} }[/math] group.
[math]\displaystyle{ S }[/math] is the number of groups of suspension data points.
[math]\displaystyle{ N_{i}^{\prime } }[/math] is the number of suspensions in the [math]\displaystyle{ {{i}^{th}} }[/math] group of suspension data points.
[math]\displaystyle{ T_{i}^{\prime } }[/math] is the running time of the [math]\displaystyle{ {{i}^{th}} }[/math] suspension data group.
[math]\displaystyle{ FI }[/math] is the number of interval data groups.
[math]\displaystyle{ N_{i}^{\prime \prime } }[/math] is the number of intervals in the [math]\displaystyle{ {{i}^{th}} }[/math] group of data intervals.
[math]\displaystyle{ T_{Li}^{\prime \prime } }[/math] is the beginning of the [math]\displaystyle{ {{i}^{th}} }[/math] interval.
[math]\displaystyle{ T_{Ri}^{\prime \prime } }[/math] is the ending of the [math]\displaystyle{ {{i}^{th}} }[/math] interval.

The solution (parameter estimates) will be found by solving for [math]\displaystyle{ {{\widehat{\sigma }}_{{{T}'}}}, }[/math] [math]\displaystyle{ \widehat{B}, }[/math] [math]\displaystyle{ \widehat{C}, }[/math] [math]\displaystyle{ \widehat{n} }[/math] so that [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial {{\sigma }_{{{T}'}}}}=0, }[/math] [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial B}=0, }[/math] [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial C}=0 }[/math] and [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial n}=0 }[/math] .