Template:Weibull mean: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 16: Line 16:
::<math> \Gamma (n)=\int_{0}^{\infty }e^{-x}x^{n-1}dx \,\!</math>
::<math> \Gamma (n)=\int_{0}^{\infty }e^{-x}x^{n-1}dx \,\!</math>


For the two-parameter case, this can be reduced to:  
For the 2-parameter case, this can be reduced to:  


::<math> \overline{T}=\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right) \,\!</math>  
::<math> \overline{T}=\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right) \,\!</math>  

Revision as of 22:52, 24 April 2012

The Mean or MTTF

The mean, [math]\displaystyle{ \overline{T} \,\! }[/math], (also called MTTF of the Weibull pdf is given by:

[math]\displaystyle{ \overline{T}=\gamma +\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right) \,\! }[/math]

where

[math]\displaystyle{ \Gamma \left( {\frac{1}{\beta }}+1\right) \,\! }[/math]

is the gamma function evaluated at the value of

[math]\displaystyle{ \left( { \frac{1}{\beta }}+1\right) \,\! }[/math].

The gamma function is defined as:

[math]\displaystyle{ \Gamma (n)=\int_{0}^{\infty }e^{-x}x^{n-1}dx \,\! }[/math]

For the 2-parameter case, this can be reduced to:

[math]\displaystyle{ \overline{T}=\eta \cdot \Gamma \left( {\frac{1}{\beta }}+1\right) \,\! }[/math]

Note that some practitioners erroneously assume that [math]\displaystyle{ \eta \,\! }[/math] is equal to the MTTF, [math]\displaystyle{ \overline{T}\,\! }[/math]. This is only true for the case of [math]\displaystyle{ \beta=1 \,\! }[/math] or

[math]\displaystyle{ \begin{align} \overline{T} &= \eta \cdot \Gamma \left( {\frac{1}{1}}+1\right) \\ &= \eta \cdot \Gamma \left( {\frac{1}{1}}+1\right) \\ &= \eta \cdot \Gamma \left( {2}\right) \\ &= \eta \cdot 1\\ &= \eta \end{align} }[/math]